
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Simulation of the Melting and Cooling of

Palladium Clusters

Jan Westergren

Department of Experimental Physics
Chalmers University of Technology and G�oteborg University

G�oteborg, Sweden 2001



Simulation of the Melting and Cooling of Palladium Clusters
JAN WESTERGREN
ISBN 91-7291-084-4

c
JAN WESTERGREN, 2001.

Doktorsavhandlingar vid Chalmers tekniska h�ogskola
Ny serie nr 1767
ISSN 0346-718X

Department of Experimental Physics
Chalmers University of Technology and G�oteborg University
412 96 G�oteborg
Sweden
Telephone +46 (0)31 - 772 10 00

Chalmers Reproservice
G�oteborg, Sweden 2001



Till Marie,
Rasmus och So�a

iii



Abstract

Simulation of the Melting and Cooling of Palladium Clusters

JAN WESTERGREN
Department of Experimental Physics
Chalmers University of Technology and G�oteborg University

The thermal behaviour of palladium clusters has been investigated us-
ing Monte Carlo simulation in various ensembles. Furthermore the energy
transfer between palladium clusters and rare gas atoms has been calculated
in simulated collisions aiming for a calculation of the cooling of clusters in a
rare gas atmosphere. The internal structure of the cluster has been modeled
by a Many-Body Alloy potential and the interaction between cluster and rare
gas atom has been modeled by the Lennard-Jones potential. At melting, the
cluster frequently switches from one phase to the other in the case of Pd13.
However, due to a free energy phase barrier, the simulations are quasiergodic
and the simulation results are not reliable within the phase coexistence re-
gion for Pd54, Pd55, Pd147 and Pd309. In contrast to bulk, the clusters up to
Pd147 (and possibly Pd309) show a distinct two-state behaviour and cannot
be partially molten. The coexistence of the phases is instead over time or
over an ensemble of clusters. The geometric properties of the clusters change
at melting. For instance, the icosahedral clusters change to an on average
non-spherical shape at melting. The simulation results are compared for the
canonical and microcanonical ensembles as well as for constant temperature
molecular dynamics simulations. The agreement between the three methods
is good.

Simulations are also performed to calculate the density of states of sepa-
rated solid and molten isomers. The Reference System Equilibration method
proved to accurately reproduce the density of states of anharmonic systems.
However, in order to estimate the melting point of a cluster, density of states
calculations must be complemented by a knowledge of the number of statis-
tically equivalent molten isomers.

In the second part of the thesis, collisions between Pd13 and rare gas
atoms are considered. The collisions are simulated by molecular dynamics
simulation. The energy transfer data obtained in the simulations were used
to calculate the cooling of the cluster in a rare gas atmosphere. Furthermore,
the character of the collisions was studied. At low gas temperatures, multiple
encounters and even sticking were observed. By statistical models, like the
Partially Ergodic Multiple Encounter Theory, energy transfer e�ciency was
investigated as a function of cluster and gas temperatures as well as of the
kind of gas atom.

Keywords: metal clusters, melting, density of states, phase barrier, collision, energy

transfer, sticking, cooling
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Chapter 1

Introduction

1.1 Preface

Smaller and smaller building blocks are used in materials science in order to
be able to design materials so that precise properties are obtained. One of
the objects that draw attention in this search for optimal materials is clusters
and particularly metal clusters [1, 2, 3, 4, 5, 6]. A metal cluster consists of a
number of metal atoms that are bound together in an aggregate. They can
be thought of as an intermediate between the single atom and metal bulk
material. The scienti�c �eld of cluster research is indeed a vivid one. In
cluster research the properties of clusters as for instance stability [7, 8, 9],
ionization potentials, reactivity with gases, and magnetic properties are in-
vestigated. Like bulk material, the cluster properties depend on parameters
as elemental constitution, geometric and electronic structure and tempera-
ture [10]. In addition the cluster properties depend on the number of atoms
in the cluster. It was discovered that cluster properties like the ionization
potential [11] does not evolve gradually from small clusters to large clusters
but exhibit an irregular dependence on cluster size. It might be intuitive
that properties can change dramatically when one atom is added to a cluster
of say ten atoms. But that the melting point is alternating with sodium
cluster size in the region 100 - 200 atoms is not beforehand obvious [12].
When properties of the aggregated atoms do not change any more with size,
the aggregate does not form a cluster any more. In practise, most clusters
investigated in the literature consist of less than 1000 atoms.

In transition metal clusters, among which we found the palladium clus-
ters, the coordination number of the surface atoms is much less than in bulk.
Therefore, two metal cluster readily combine to form a larger cluster. This
property makes them di�cult to handle. For instance, free clusters cannot be
studied in an ordinary gas, since the collisions with each other and with walls
would ruin the initial size distribution. Free clusters are instead often stud-
ied in cluster beam experiments. Moreover, clusters are often studied when
deposited on a substrate [13, 14, 15, 16]. Although, the clusters have not
yet been put to technological use, there are areas where they are promising.
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Two areas in close connection to cluster research are catalysis [17, 18, 19]
and computer information storage [20, 21, 22, 23].

In cluster experiments it was observed that many properties of free clus-
ters depend on the internal cluster temperature. Among these properties we
�nd the ionization potential [24, 25, 26], reactivity [27] and magnetic mo-
ments [10]. Hence, the thermal properties of clusters are of great interest. In
nowadays famous experimental work of the group at Universit�at Freiburg in
Germany, the melting of sodium clusters was investigate [12, 28, 29]. In their
method, size-selected clusters assume a desired temperature by passing a heat
bath of rare gas. Subsequently, a photofragmentation pattern is recorded.
The temperature of the clusters can be increased either by injecting a known
amount of photon energy after the heat bath or by increasing the heat bath
temperature. When the photofragmentation patterns match, the photon en-
ergy corresponds to the temperature increase and the heat capacity can be
calculated.

A heat bath has also been used by Chandezon et al. [8]. In an experiment
where sodium clusters were allowed to evaporate, the relative stability of the
cluster sizes was investigated. By letting the clusters evaporate in a heat bath
instead of in vacuum, a more strongly modulated cluster size distribution was
obtained and thus the shell e�ects of sodium clusters appeared more clearly.

Melting of clusters was also observed by von Pietrowski et al [30]. They
studied melting of Ne clusters by doping them with Xe atoms. The spectrum
of excited xenon atoms was measured by 
uorescence excitation spectroscopy.
The observed spectral shift is proportional to the number of nearest neigh-
bours and they could conclude that the Xe atoms were surrounded by Ne
atoms, i.e. the Xe atoms had penetrated the cluster which proved the pres-
ence of a molten phase of the cluster. Heinze et al. [31] have derived a method
to convert experimental data on scattering from a cluster into the mean ki-
netic energy, i.e. the temperature. In early experimental work of Bu�at and
Borel [32] and Iijima and Ichihashi [33] structural changes corresponding to
a molten phase were observed in electron microscope.

When I joined the Molecular Physics Group in G�oteborg, an experimental
setup using the laser vapourization technique was used to study reactivity
of free metal clusters. One issue was to investigate the dependence of the
reactivity on cluster temperature. The question arose whether the number of
collisions between the clusters and the surrounding gas was su�ciently large
to control the cluster temperature? And what kind of gas would cool the
clusters must e�ciently? By means of molecular dynamics simulation of col-
lisions between a gas atom and a cluster we tried to answer these questions.
However, in order to calculate the cooling of the cluster the heat capacity
must be known. In the beginning of our work we used the results from a
work by my coworker Henrik Gr�onbeck [34] and others. They used molecular
dynamics simulation with the Nos�e-Hoover thermostat [35]. In order to in-
vestigate whether di�erent simulation techniques would give di�erent results
we also calculated the cluster heat capacity using Monte Carlo simulation.
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Figure 1.1: The experimental set-up for cluster production using the laser
vapourization technique. The �gure is drawn by Lotta Holmgren [42].

Previously in our group, theses on clusters have been presented by Bo
W�astberg [36], Mats Andersson [37], Daniel �Ostling [38], Henrik Gr�onbeck
[39], Lotta Holmgren [40] and Thorbj�orn �Aklint [41].

1.2 The laser vaporization technique

In the early 1980s the laser vaporization technique [43, 44] became available
and made experimental study of free clusters practicable. This technique
has been used in our group the last ten years for the investigation of cluster
reactivity [45]. The set-up for cluster production is found in Fig. 1.1. In
a chamber called the cluster source, a pulsed laser beam is focused onto a
metal target and vapourizes surface metal atoms. The metal vapour formed
is entrained in a pulsed 
ow of carrier gas. In collisions with the carrier
gas the metal atoms are cooled and may condense into clusters. In order to
study how the clusters act as a function of temperature the cluster source is
either at room temperature or at liquid nitrogen temperature, 77 K. Before
the clusters leave the source they may collide with each other, forming bigger
clusters. After passing the nozzle the atoms and clusters undergo a supersonic
expansion into vacuum and the clusters form a beam. In the expansion the
cluster growth is interrupted and the clusters range in size from one atom to
several hundred atoms. Before entering the reaction cell, most of the carrier
gas is skimmed o� by a skimmer. Passing through the reaction cell, the
clusters experience a low number of collisions with reactive molecules, e.g.
CO. The reactivity is evaluated by time-of-
ight spectrometric detection of
the relative abundance of bare and reacted clusters.
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1.3 Melting of clusters

The thermodynamical properties of clusters may help the understanding of
processes in bulk. A great deal of e�ort has been put into the analysis of
melting of clusters. It is remarkable that the research was initiated by com-
puter simulations rather than experimental work. Early simulations were
performed by e.g. Kaelberer and Etters [46] and Lee et al. [47] in the 1970s.
Since the late 1980s, scientists have formulated theories for the thermal be-
haviour of clusters [48, 49, 50]. Much progress has been made in statistical
thermodynamics of �nite systems. It has been found that some thermo-
dynamical laws have to be slightly reinterpreted when the system is �nite.
For instance, such fundamental concept as the melting temperature has to
be changed into a melting temperature interval for clusters. Over the last
15 years many scientist have done similar simulations of melting as will be
presented in this thesis. Our results do agree with the common knowledge
established in the literature. In Paper II, the Reference System Equilibra-
tion method is used in order to contribute to the solution of one of the major
problems in the simulation of condensed matter: the prevention of phase
crossing by free energy barriers.

1.4 Cooling and collisions

Molecular collisions are most important events in chemistry. By collisions
gas phase reactions are initiated. By collisions reactants can be cooled and
stabilized [51]. Also in physics collisions are crucial. Adsorption, desorption
and sticking of molecules on surfaces are two examples within surface physics
where collisional energy transfer is of importance [52, 53].

Two major areas of collisional investigations might be mentioned. The
�rst one is bimolecular collisions. One of the simplest chemical reactions is
the gas-phase unimolecular reaction. In such a reaction the reactant and
the product maybe the same molecule, with a modi�cation of for instance
the structure in an isomerization reaction. In early studies of such reactions,
Lindemann [54] showed that the reactant needs to be energetically activated
in a collision in order to transform into products. In the RRKM theory [55]
the collisional energy transfer is one of the ingredients needed to calculate
the reaction rate and this has been one reason for measuring/calculating the
energy transfer rate [56, 57].

A second major area of collision investigations is that of molecule-surface
collisions [58, 59, 60, 61]. In cluster research cluster-surface collisions are of
ultimate interest. In the last years deposition of clusters on substrates has be-
come one of the major issues in cluster research. There is a wealth of studies
of collisions of clusters on surfaces [14, 15, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]
(see also the proceedings of ISSPIC 1998 [72]). Cluster-surface collisions have,
however, also been used to understand collision induced cluster reactions [73]
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and charging of scattered water clusters [74]. Simulations of cluster-cluster
and cluster-molecule collisions may be found in Ref. [75, 76, 77, 78, 79].

For a long time the collisional energy transfer was deduced from results of
"indirect methods" like reaction studies [51, 80]. The most common exper-
imental set-up for studying chemical reaction dynamics has been molecular
crossed beam experiments for which Dudley Herschbach and Yuan Lee were
awarded the Nobel Prize in chemistry in 1986 [81]. This technique has also
been used for dissociation of sodium clusters [82]. Since the late 1980s "di-
rect" spectroscopic methods have been used to measure the energy transfer.
In these methods the excitation of the molecules is measured [51].

With computer simulations the problem is put in a di�erent light. By
integrating the trajectories of the atoms the energy transfer can be calculated
directly. The drawback is of course that the exact interaction between the
colliding species is not known and hence the simulations need experimental
con�rmation. Still, even if the simulation may not be capable of exactly
reproducing experimental data, it is an invaluable tool for investigation of
collision phenomena and trends. For instance, the variation of the energy
transfer can be investigated for varying interspecies potential at �xed masses.
Such an investigation is di�cult in experiments.

The gain in knowledge from one speci�c trajectory is minor, especially
since the interaction between the atoms is not precisely in agreement with
experimental reality. Recently, trajectories have been integrated with the
forces calculated by ab initio methods [83]. However, the number of collisions
that are required to obtain an acceptable accuracy in the average energy
transfer is so large that ab initio methods must be left to the future.

The outcome of a speci�c trajectory is chaotic. The slightest change
in initial conditions and the trajectory will become totally di�erent. The
average behaviour is however stable. As an example we recall that when
changing the compiler for our simulation program, the incoming gas atom
often went a totally di�erent way in the collisions, despite identical input. For
the average energy transfer, on the other hand, the outcome was independent
of compiler.

Although the trajectories are chaotic we have been able to see some
trends. It might seem intuitive that gas atoms heading towards a cluster
with a small impact parameter bounce o� while gas atoms with a larger im-
pact parameter can pass the cluster with a net attraction only. But that
the former class of trajectories heats the cluster and the later one cools the
cluster, although the gas and cluster are in thermal equilibrium, might be
surprising (see Fig. 7.1). Single trajectories might also give insight into
the sticking phenomenon. Still, it is the average behaviour that is of major
interest.

Thermodynamics predicts that the average energy transfer should be from
warmer to colder species. We can thus write the energy transfer from species
A to B as

h�Ei = k hTA � TBi : (1.1)
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The factor k may however vary with the temperatures TA and TB. One of
the �rst attempts to model the energy transfer was the Strong Collision As-
sumption proposed by Hinshelwood [84]. In this model he proposed that an
excited species was cooled to equilibrium with the surrounding atmosphere
after only one collision. This model considerably overestimated the energy
transfer e�ciency. Tardy and Rabinovitch [85] and Hippler and Troe [51]
showed that the typical energy transfer collision is weak rather than strong.
In this theses we will use three statistical models to describe the energy trans-
fer: the Ergodic Collision Theory (ECT) [86], the Partially Ergodic Collision
Theory (PECT) [87, 88] and the Partially Ergodic Multiple Encounter Col-
lision Theory (PEMET) [87, 88].

The original aim for the collision simulations was to study the cooling of
clusters, especially at the aggregation of the clusters. Bymeans of simulations
we have calculated the temperature decay of hot Pd13 in various atmospheres
of rare gases. For this calculation, only the energy transfer results from
collision simulations and the heat capacity data (from the MC simulations)
are required. The project was however extended to statistical treatment
with ECT, PECT and PEMET in order to better understand the underlying
dynamics of the collisions.
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Melting of palladium clusters





Chapter 2

Internal cluster structure

The reliability of the computational and simulation results are naturally
highly dependent on the choice of model to describe the electronic structure
of the cluster. Only clusters in their electronic ground state are considered
in this work and thus only the vibrations and rotations of the cluster con-
tribute to the properties. Since it is the potential energy surface that causes
the vibrations, the electronic structure need to be known for the electronic
ground state. The quality of the model must however be balanced against
computational e�ort. The results presented in this thesis are based upon
approximately 10 billion computations of the potential energy of cluster con-
�gurations and 5 million collision trajectories. Even though the simulations
in some cases could have been shortened, the computers of today are too slow
to manage so many calculations using ab initio techniques. Model Hamil-
tonians must be used. The properties that must be realistically modeled
are for the melting calculations: the cohesive energy, the geometric struc-
ture, the normal mode frequencies and the anharmonicity of the vibrations.
In the simulations we have used the Many-Body Alloy potential developed
by Tom�anek et al. [89]. This potential is also known by the name Gupta
potential [90].

Palladium is a transition metal with the free atom electron structure
(Kr)4d10, i.e. the d shell is �lled. However in the form of cluster or bulk, the
con�guration tends to be more like (Kr)4d95s1 [91]. In the MBA potential
the cohesive energy is the sum of a many-body attractive part and a pairwise
repulsive part. The repulsive part is due to the coulombic repulsion of the
ion cores and the Pauli repulsion of the overlapping s orbitals [39] and it is
modeled as being of Born-Mayer type, i.e. the repulsion decays exponentially
with the separation rij between atoms i and j:

�0
X
j 6=i

exp (�p (rij=r0 � 1)) : (2.1)

The attractive part is based on the second moment approximation of tight-
binding calculations. The attraction is due to hybridization of the d states
into bands when the free atoms are brought together into a crystal. The
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binding energy is obtained by an integration over the occupied states

Ebond (i) =
Z Ef

�1

�
E � E

0
�

i (E) dE; (2.2)

where Ef is the Fermi energy, E
0
is the energy of the centre of the band

and 
i (E) is the local density of states near atom i. If we consider only
interaction between nearest neighbours i and j, the binding energy of atom
i is proportional to the square root of the sum of "hopping" integrals which
furthermore can be assumed to have an exponential decay:

Ebond (i) /
0
@X

j

h'i jHj'ji
1
A1=2

/
0
@X

j

e�2qrij

1
A1=2

: (2.3)

The bonding and repulsive parts are now fused into the MBA expression for
the total potential energy

U =
nX
i=1

0
@��0sX

j 6=i

exp (�2q (rij=r0 � 1)) + �0
X
j 6=i

exp (�p (rij=r0 � 1))

1
A :

(2.4)
The parameters that we have used were calculated [89] by �tting the energy
versus lattice parameter to density functional theory (DFT) calculations of
totally frozen bulk palladium with the local density approximation (LDA).
The resulting parameters are �0 = 1:2630 eV, �0 = 0:08376 eV, r0 = 2:758 �A,
p = 14:8 and q = 3:40. These parameter values were also used in the work
by Gr�onbeck [34] with which we are going to compare our melting simula-
tions. This parameterization has proved to compare favourably with SCF-CI
calculations of optimized geometric structures of Pd13 [92]. The MBA pre-
dicts the radius of Pd13 to be 2.50 �A and the energy di�erence between the
icosahedral and the octahedral structures to be 0.12 eV. The SCF-CI calcu-
lations resulted in 2.60 �A and 0.12 eV, respectively. The use of a many-body
potential can be crucial for metallic systems. Many properties, like stacking
fault energies, surface structure and relaxation cannot be properly described
by pair-potentials [93]. The MBA potential has been used for metallic bulk
and metal clusters by many others [93, 94, 95]. Other potentials that have
been used for metallic systems are for example the Embedded-Atom Method
[96] and the E�ective Medium Theory [97]

Jarrold and Bower proposed a model for the vibrational spectrum of metal
clusters [98]. In this model, the density of modes is supposed to be propor-
tional to !2 but vanish above a cut-o� frequency. Here ! is the angular
frequency. The cut-o� frequency for a cluster with n atoms is assumed to be
given by

!cut�off (n) = !cut�off (1) �
�
1� n�0:33

�a
; (2.5)

where a is an empirical parameter. The cut-o� frequency for bulk is obtained
from the Debye temperature [99],

!cut�off (1) =
2�kB�Debye

h
: (2.6)
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Figure 2.1: The angular frequencies of the solid (black) and molten (grey)
isomers at 0 K. The dashed line represents Jarrold's model. The number of
normal modes are 435 for Pd147.

For palladium, �Debye = 275 K and the frequency of Pd2 is 210 cm�1 [100].
Now a can be calculated and �nally the frequency spectrum of Pd147 clusters.
In Fig. 2.1, the spectrum according to Jarrold's model is drawn as the dashed
curve. The black and grey dots are the frequencies from a normal mode
analysis using the MBA potential for the solid Pd147 and the supercooled
molten Pd147 (see Sec. 5.3), respectively. The Jarrold model and the MBA
potential model are in fair, although not excellent agreement.

The agreement of the lattice constant is good, but, unfortunately, the
parameters do not reproduce the experimental cohesive energy of bulk Pd.
The parameters that we have used predict the cohesive energy per atom to
be �3.47 eV to be compared with the experimental value �3.89 eV [99]. This
error will de�nitely a�ect the melting point calculations, as the melting point
is proportional to the cohesive energy, all other parameters being �xed. But
since we had started with these parameters, we have used them throughout
the work. The parameters by Cleri and Rosato [93] and Rey et al. [94] will
certainly describe at least the bulk properties of palladium better. Still, our
parameters reproduce the volume expansion of bulk palladium fairly well.
In Fig. 5.10, the volume per particle at zero pressure from Monte Carlo
simulations is compared with experimental data [101]

Metal clusters with special numbers of atoms, so-called magic numbers,
have proven to be more stable than others [102]. Such stable clusters often
have an electronic or geometric closed shell. The icosahedral clusters with
13, 55, 147, 309, ... atoms are examples of clusters with closed geometric
shells [103]. The reason small clusters take another crystallographic shape
than bulk is that the surface is rearranged to lower surface energy. The re-
arrangement introduces an internal strain but still the total energy is lowered
[104]. One important property of the icosahedral clusters is that they prob-
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ably have a unique minimum energy con�guration. Tsai and Jordan [105]
performed a search for the 30 isomers with lowest energy in LJ13 and found
that the icosahedral isomer had a considerably lower energy than the other
isomers . In contrast, for the non-icosahedral cluster Pd34 we found that
many minima are close to the global minimum energy.



Chapter 3

Phases and phase transitions

3.1 Bulk systems

Phases and phase transitions of bulk 
uids and solids have been observed at
least as long as man has been able to boil water. In Sweden the melting of
ice in the spring is eagerly awaited each year. Phase transitions have also
been put to technological use for a long time. The most obvious phases,
solid, liquid and gas, can easily be characterized by eye. However, the solid
phase can be divided into many subphases where the atomic structure varies,
resulting in di�erent properties. One example is the di�erent phases of ice
[106]. At high pressures ice can attain di�erent crystal structures with for
instance di�erent compressibility.

The formal de�nition of a phase is given in standard textbooks, e.g. [107]

A state of matter that is uniform throughout, not only in
chemical composition but also in physical state.

The phases and phase transitions are beautifully explained by thermodynam-
ics. Here I will give a short review of the thermodynamics of phase transitions
essentially following "Thermodynamics and an introduction to thermostat-
ics" by H. B. Callen [106]. The system is assumed to consist of one kind
of atoms only. Depending on what parameters that are �xed for a system,
(e.g. the volume (V), number of atoms (N) pressure (P) and temperature
(T)), di�erent thermodynamical potentials determine the equilibrium state.
At constant N,T,V, the equilibrium is the state with minimal Helmholtz free
energy, F = E � TS. E is the internal energy, S is the entropy and T is
the temperature. In this thesis we will only deal with systems that are not
electronically excited and the internal energy corresponds to the sum of the
potential and the kinetic energies. In order to determine what phase that
is stable at given N,T,V, the free energy of the phases should be compared.
Characteristic of a �rst-order transition is that the free energy surface of each
phase exhibits a dominant local minimum. These minima are separated by
a free energy barrier as illustrated in Fig. 3.1.
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Figure 3.1: Schematic variation of the free energy for three di�erent temper-
atures (T1 < T2 < T3). At T2 the transition occurs.

The phase with the lowest free energy is the equilibrium state. Say that
the temperature of a system is so low that the dominant term in the free
energy is the potential energy U . The potential energy of any liquid structure
is greater than that of the solid structure and thus the system will be solid.
However, with increasing temperature, the greater entropy of the liquid phase
will eventually bring the system to a point where the local minima are equal.
At this point the two phases coexist. Further increase of the temperature
makes the liquid phase stable. The system is not static and 
uctuations occur
constantly. Occasionally, a 
uctuation can bring the system from the stable
phase to the unstable phase. In a bulk system with an almost in�nite number
of atoms, 
uctuations to the unstable phase are however very improbable.
The two phases can only coexist at a de�nite temperature for a given volume.
In contrast, in a system with very few atoms, such 
uctuations are more
frequent as will be discussed in Sec. 3.3. Two phases of a �nite system
therefore coexist over a �nite temperature range.

In a �rst-order phase transition, the only extensive property of the phases
that is equal at coexistence is the free energy. Quantities such as for instance
the internal energy per atom generally di�er, also at the very melting. In a
caloric curve (i.e. energy versus temperature), this is clearly demonstrated
by a step in potential energy at the phase transition temperature. The same
step, although rounded, can be seen for many clusters (see Fig. 5.1). This
step is actually one of the most obvious indications of phase transition. A sys-
tem that shows a second-order transition lacks the de�nite minimum of the
free energy surface in con�guration space. When approaching a phase transi-
tion from low temperatures, the competing minima will approach each other
in con�guration space. Also the potential energies of the phases approach
each other and become equal at the transition temperature. A second-order
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Figure 3.2: The solid curve shows the entropy as a function of the total
energy per atom when a bulk system is not allowed to segregate into phases.
Any convex part of the curve corresponds to instability and the dashed line
describes the entropy when the system is allowed to segregate into coexisting
phases. In constrast, an ensemble of clusters may follow the solid curve.

transition is therefore characterized by a kink (higher order nonanalytic-
ity) in the potential energy, rather than a step [107]. With one exception,
Pd34,the behaviour of the palladium clusters in this work, show clearly that
the melting approaches a �rst-order transition with increasing cluster size.

In an isolated system, for which the �xed parameters are the number of
atoms N , the volume V , and the total energy E, a �rst-order phase transition
occurs over a �nite energy interval. The interval corresponds in the in�nite
system limit to a �xed temperature, i.e. the kinetic energy per atom is
constant. During the melting, the increase of total energy is used to bring
the system from a state of low internal energy to a high internal energy. This
energy is called the latent heat. The fundamental equation of the system
that totally governs the its behaviour is the entropy as a function of energy,
volume and particle number,

S = S (E; V;N) (3.1)

In a schematic graph of the entropy versus one of the variables, a stable
phase is characterized by a concave function (Fig. 3.2). In the convex re-
gion between points A and B in Fig. 3.2 the system is unstable and will
spontaneously split up in fractions of both phases. The entropy, which is
an extensive quantity, will thus increase linearly when the fraction of the
high-temperature phase gradually goes from zero to one. Thus, the system
will instead follow the dashed line in Fig. 3.2.
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3.2 The density of states

A concept in close connection with the entropy is the density of states 
 (E).
Their relation is given by

S = kB ln
; (3.2)

where kB is Boltzmann's constant. In a quantum system, the density of states
is de�ned as the number of states available per unit energy interval. However,
when considering classical systems, a "state" is not as clearly de�ned. In
1875-1878, Willard Gibbs de�ned the partition function of a system of n
coordinates and n momenta as [106]

Z =
1

hn

Z
exp

 
�E (q1;:::; qn; p1;:::; pn)

kBT

!
dq1:::dqndp1:::dpn (3.3)

Since then, quantum mechanics entered science and the quantum partition
function is de�ned as a sum over all states j or an integral over the density
of states (DOS)

Z =
X
j

exp
�
� Ej

kBT

�
=
Z 1

�1

(E) exp

�
� E

kBT

�
dE (3.4)

At high energies, classical and quantum mechanics should be equivalent and
the partition functions according to Eqs. 3.3 and 3.4 should be equal. The
classical DOS can hence be identi�ed as


 (E) dE =

R
V (E;E+dE)

dq1:::dqndp1:::dpn

hn
(3.5)

where V (E;E + dE) is the available phase volume for the energy interval
[E;E + dE]. Here h is Planck's constant.

3.3 The phase concept for �nite systems

In the early interpretations of cluster simulations, con
icting statements were
made about whether clusters melt with a sharp transition or with a coexis-
tence of the phases over a �nite temperature interval [48]. By coexistence we
do not mean two phases in contact with each other but rather that an equi-
librium ratio of number of solid to number of molten clusters is established
in an ensemble of clusters [108]. It is now generally accepted that the phases
coexist over a �nite temperature interval. It was shown that the sharp tran-
sition between phases in a �rst-order transition of an in�nite system arises
in the limit when the number of atoms n ! 1. With the assumption
that a cluster can only take on two distinct states (phases) [109], the sharp
transition is rounded. In this thesis the corresponding assumption will be
referred to as the two-state approximation [48]. In an ensemble of clusters at
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a �xed temperature, the melting/freezing can be described as a unimolecular
isomerization reaction

Pdn (s) *) Pdn (m) (3.6)

In the two-state approximation, the equilibrium constant is

K =
[Pdn (m)]

[Pdn (s)]
= exp (� (Fm � Fs) =kBT ) : (3.7)

where Fm and Fs are Helmholtz free energy for the molten and the solid
cluster, respectively. For small clusters, K gradually goes from zero to 1
with increasing temperature. When n is large, the free energy per atom, f ,
is independent of n and can be written as F = nf: The equilibrium constant
is then

K = exp (�n (fm � fs) =kbT ) : (3.8)

When n �! 1, K exhibits a singularity when fm � fs switches sign, i.e.
the phase transition is sharp. The rounding of the transition is perhaps
most obvious in the caloric curve or in the graph of the heat capacity ver-
sus temperature. At the melting, the heat capacity has a peak but due to
the rounding, the peak has a �nite width. All my simulations (except the
simulations of Pd34) con�rm the two-state approximation. In Fig. 3.3, the
heat capacity of Pd13, Pd55 and Pd147 are plotted. The width of the coexis-
tence interval is �nite, and the equilibrium constant is only valid if there are
local minima in free energy for both phases. Berry and coworkers showed
that local minima are present only within a �nite temperature interval [110].
Outside this interval strictly one phase is present [110, 111]. The width of
the coexistence interval, i.e. the interval where both the phases are present,
can be estimated by [112]

�T � T 2
mkB
nA

; (3.9)

where A is the latent heat per particle and Tm is the melting temperature.
The melting point is often de�ned as the temperature where the heat capacity
is maximal. Since the latent heat per particle and the melting temperature
do not change dramatically with number of atoms the coexistence interval
must approach zero when n ! 1. The coexistence widths do shorten with
cluster size in Fig. 3.3.

The di�erence between solid and liquid phases is often obvious for bulk
systems. The atoms become mobile and the material loses its well-de�ned
shape as the solid melts. For small clusters, the phase change is less obvious.
However, in simulations some characteristics are mostly found. Upon melt-
ing, the cluster atoms become mobile, �rst the surface atoms and then also
the core atoms. The mobility can be measured by the ratio of the timescale
of vibrations to the timescale of switches between di�erent structures of the
cluster. Amar and Berry [48, 113] found for cluster that this ratio was less
than 100 for molten clusters, but many orders of magnitudes larger for solid
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Figure 3.3: The heat capacity per atom from the MC simulations are shown
at �xed T of Pd13 (rings), Pd55 (stars) and Pd147 (triangles). The solid lines
are derived from Eq. 3.12. NB: logarithmic scale on the ordinata.

clusters. The mobility can be measured by the Lindemann index which is
also called the relative bond length 
uctuations [48]

� =
2

n (n� 1)

nX
i=1

nX
j=i+1

rD
r2ij
E
T
� hriji2T

hrijiT
: (3.10)

where hrijiT is the average distance between atoms i and j. � increases at the
onset of particle mobility. Thus, sampling of � in a Monte Carlo simulation is
a tool for indicating when melting starts. Lindemann's criterion for melting
of bulk is that � exceeds 10% [114]. This criterion has also been used and
veri�ed in simulations of clusters [46]. A more stringent de�nition of phases is
to use the local minima of the potential energy surface. Each minimumcan be
called a catchment region, basin [115] or inherent structure [116]. The idea is
that any con�guration of a cluster will upon a rapid quenching fall into one of
these basins. Such a basin will in this thesis be called an isomer. The isomers
can now be classi�ed as belonging to di�erent phases, for instance according
to minimum potential energy or to geometric structure. At temperatures
above melting, the cluster frequently switches between di�erent isomers and
we say that the many isomers together constitute the molten phase. The
number of isomers constituting the molten phase is enormous. This number
is believed to increase exponentially and for LJ55, Doye et al. [117] estimated
the number of molten isomers to be approximately 1021. In contrast, the
minimum energy isomer of the icosahedral clusters is likely to be exclusively
dominant in the solid phase as mentioned above.
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The entropy of a �nite system as a function of the total energy can be
schematically illustrated by Fig. 3.2. Very small systems cannot sustain
fractions of molten and solid structure. As a consequence, the curve will be
convex at the melting for a small cluster [49].

The phase transition of small metal clusters with characteristic solid and
molten isomers approaches �rst order character with increasing n. Investiga-
tions of the molecular cluster (TeF6)n indicates, however, that when n!1,
this cluster will show second order transition [118]. In these clusters, di�erent
phases of orientational order are present at di�erent temperatures.

Surface melting has been an issue of debate [119]. The term surface melt-
ing is used for clusters which feature a premelting phase transition involving
the surface atoms only. In this phase, the surface atoms might show an orga-
nized and collective motion around the core. Although we have observed that
surface atoms change positions at temperatures below the melting, no real
molten phase of the surface was found. Besides surface melting, the cluster
may undergo solid structural transformations below the melting point. Doje
and Wales found a fascinating reconstruction of the Mackay icosahedra with
n = 561 and n = 923 into anti-Mackay icosahedra at a temperature well
below the melting temperature [120].

3.4 A two-state model for the density of states

In accordance with the two-state approximation [48] that the cluster must
either be entirely solid or molten, we have used a simple two-state model for
the density of states of clusters with a typical coexistence melting or freezing
region, as for instance the icosahedral clusters:


 (E) = 
s (E) + 
m (E) / (E � E0)
n1 + k2 (E � E0)

n2 : (3.11)

Here 
s (E) and 
m (E) are the DOS of the solid and molten phases, respec-
tively, at the total energy E. The vibration, translation and rotation of the

cluster give rise to power law terms like (E � E0)
exponent , but to account for

the anharmonicity of the vibrations, the exponents n1 and n2 are adjustable
parameters. Although E0 may be calculated by a search for the ground state
con�guration of a cluster, it is regarded an adjustable parameter as well. The
prefactor k2 is the last parameter while the prefactor of the solid phase term
is arbitrarily set to unity. Note that only the relative magnitude of the solid
and the molten phase contributions will be of signi�cance in our discussion
of the melting transition and cluster properties below.

The temperature-dependent caloric equation based on this model is ob-
tained as

hEiT =

1R
E0

E � 
(E) exp (�E=kBT )dE
1R
E0


(E) exp (�E=kBT ) dE



20 Phases and phase transitions

= E0 + kBT
� (n1 + 2) + (kBT )

n2�n1 k2� (n2 + 2)

� (n1 + 1) + (kBT )
n2�n1 k2� (n2 + 1)

; (3.12)

where � (x) is the gamma function. In order to calculate the caloric equation
in the microcanonical ensemble (i.e. the kinetic or the potential energy as a
function of the total energy) for the model DOS, an introduction of the DOS
for the kinetic energy 
kin and the potential energy 
pot is necessary. The
derivation of these functions is shown in Paper I. The caloric equation will
be found to be

hEKiE =

E�E0Z
0

EK � 
kin (Ek)
pot (E � Ek)


 (E)
dEK

=
3n

2
(E � E0)

1 + k2
n1+1
n2+1

(E � E0)
(n2�n1)

n1 + 1 + k2 (n1 + 1) (E � E0)
(n2�n1)

(3.13)

Recall that n is the number of atoms of the cluster. The parameters n1, n2,
E0 and k2 can be calculated by a least-square �t to the simulation results.
The melting temperature in the canonical ensemble and the melting total
energy in the microcanonical ensemble may now be calculated using the
�tted parameters. The melting point criterion that we have used is that the
equilibrium constant in Eq. 3.8 should be unity. In the canonical ensemble
the corresponding criterion is that the partition functions of the two phases

zs =

1Z
E0


s (E) exp (�E=kBT ) dE; (3.14)

zm =

1Z
E0


m (E) exp (�E=kBT ) dE; (3.15)

should be equal. Using the model DOS, the expression for the melting tem-
perature will be

TM =
1

kB

 
k2
� (n2 + 1)

� (n1 + 1)

!1=(n1�n2)

: (3.16)

With the model DOS our de�nition of the melting point is found to di�er neg-
ligibly compared to the temperature for which the heat capacity is maximal.
In the microcanonical ensemble the melting point criterion is equivalent to
the condition that 
s (EM ) = 
s (EM ). Using the model DOS the expression
for the melting energy will be

EM = E0 + (k2)
1=(n1�n2) : (3.17)

The two-state model DOS will be used for three purposes. First, it is
�tted to simulation caloric curves in the canonical ensemble (Fig. 5.1) and
the accurate agreement shows that the two-state approximation is realistic.
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Second, the model is �tted to microcanonical simulation caloric curves. The
agreement between the �tted parameters in the canonical ensemble and the
microcanonical ensemble illustrates the equivalence of the two ensembles (see
Tables 1 and 2 in Paper I). Third, the model DOS is used to convert mi-
crocanonical data into temperature-dependent data in order to compare, for
instance, the radii of gyration of the cluster in the two ensembles. In an
isolated system where the total energy is conserved, the distribution of the
kinetic energy is extremely narrow if the number of particles is large. Hence
the temperature is well de�ned and the systemmight as well be considered to
be canonical distributed [121]. In contrast, the distribution of the kinetic en-
ergy in Pd13 is wide at �xed total energy. If an average hAiE of the quantity
A is known for all total energies E, the average hAiT at a certain temperature
T can be calculated by a weighted integration over all energies

hAiT =

1R
E0

hAiE 
(E) � exp (�E=kBT ) dE
1R
E0


(E) � exp (�E=kBT ) dE
: (3.18)

As simulation data from the microcanonical simulations is available only up
to a maximal energy Emax , the integrals in Eq. 3.18 must be truncated. If the
temperature is not too high, the truncation error may however be negligible
as the contribution is insigni�cant for large E. The conversion of energy-
dependent data into temperature-dependent data is done by insertion of the
model DOS.
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Chapter 4

Simulation techniques

In this chapter we describe some simulation techniques for the calculation of
average properties of systems in equilibrium. The simulation details for the
energy transfer calculations will be presented in Part II.

4.1 Ensembles for describing the equilibrium

properties of the cluster

4.1.1 The canonical ensemble

The properties that are to be measured or calculated for a system in equi-
librium are time averages. For instance, the force that a gas chamber wall
experiences changes from instant to instant and thus the pressure must be
de�ned as the average force per wall area during a certain time. A funda-
mental assumption in statistical thermodynamics is that instead of taking
the average of a property during an in�nite time interval, the property can
as well be calculated as a weighted average over the total phase space of the
system. A canonical ensemble of the system is an in�nite set of replicas of
the system where all replicas have the same volume and the same number
of atoms. The energy is however free to 
ow between the replicas in order
to maintain a �xed temperature in all the replicas. A con�guration of the
system is a certain point in the phase space, �, i.e. all the coordinates and
momenta are speci�ed. The probability that the con�guration in one replica
of the ensemble is � is given by the Boltzmann factor,

probability (�) / exp (�E (�) =kBT ) ; (4.1)

where E (�) is the total energy of the con�guration. This probability distri-
bution of the con�gurations is also valid in the system during in�nite time.

In a closed system the number of atoms is �xed. Moreover, the common
experimental situation is that the temperature also is well-de�ned. More
complex is the matter of the volume. It is in experiments commonly rather
the pressure than the volume that is an adjustable parameter. The pressure
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Figure 4.1: Examples of non-fragmented (left) and fragmented (right) cluster
con�gurations according to our de�nition.

corresponds to a certain volume, that is true, but since the compressibility of
solids and liquids is low, a small error in volume will cause a pressure which
is far from the desired one. Therefore, the isobaric-isothermal ensemble with
�xed number of atoms, temperature and pressure is often used for simulation
of solids and liquids.

The situation is more complicated for clusters. The desire is to simulate
an ensemble of a single cluster that is free to appear in any relevant geometric
con�guration. However, at any temperature the equilibrium state of a cluster
is a total evaporation of all atoms if the cluster is not con�ned to a �nite
volume. The reason is that although the probability for the ground state
con�guration of the cluster might be considerably larger than for all other
con�gurations according to the Boltzmann distribution in Eq. 4.1, the phase
volume of all totally evaporated con�gurations is in�nite. On the other hand,
if the cluster is con�ned to a �nite volume, an equilibriumwill be established
between evaporated atoms and the remaining cluster. The �nite volume
implies an undesired non-zero pressure and the number of atoms of the cluster
may be di�cult to de�ne.

A common way to simulate a cluster is to reject all con�gurations that
are considered to represent a fragmented cluster. One way is to con�ne the
cluster to a small sphere [47, 122]. However, there is a risk that spherical
shapes of the cluster are favoured. As will be seen, the small clusters are
not at all spherical in the molten phase. Cheng et al. [50] proposed the
simulation of clusters at constant pressure and the evaluation of the volume
from the relation

V = �
 
@G

@P

!
T

(4.2)

where G is Gibbs free energy and P is the pressure. Our de�nition of a
non-fragmented cluster is that it should be possible to make a chain of bonds
from any cluster atom to any other. With this de�nition, the atoms to the
left in Fig. 4.1. describe a cluster in contrast to the atoms to the right. The
advantage of this de�nition is that spherical shapes of the cluster are not
favoured.

Here a bond is only an indication of a short interatomic distance. Two
atoms are supposed to be bonded if they are closer to each other than a
distance B. The exact choice of B is not crucial and any B between 4 and 5.8
�A resulted in the same distinction between fragmented and non-fragmented
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clusters for the potential parameters that we have used. Furthermore, the
vapour pressure of palladium is so low that rapid evaporation occurs only
many hundred kelvin above the melting point [115].

4.1.2 The isobaric-isothermal ensemble

In the isobaric-isothermal ensembles the number of atoms, the pressure and
the temperature are constant and the volume is treated as a variable equiva-
lent to the coordinates and the momenta of the atoms. When the volume is
changed, the atomic coordinates are correspondingly scaled so that the "sim-
ilar" system is obtained. The probability for a con�guration with a certain
volume is [123]

probability (�; V ) / exp (� (E (�; V )� PV ) =kBT + n lnV ) ; (4.3)

where E (�; V ) is the total energy of the con�guration. In Sec. 5.3 we refer
to our unpublished work on simulations of bulk palladium where this NPT-
ensemble was used.

4.1.3 The microcanonical ensemble

In the microcanonical ensemble, the �xed temperature is replaced by a �xed
total energy. Since a single isolated cluster forms a constant-energy sys-
tem, this ensemble is of relevance for the study of the properties of a cluster
without the thermal averaging that the Boltzmann distribution implies. In
the simulations we are only interested in features regarding the spatial con-
�guration and thus we would like to simulate the cluster coordinates only,
disregarding the momenta. Although the spatial con�gurations and momenta
are connected via the total energy conservation, it is possible to sample the
spatial con�gurations only. For the sampling of quantities we have used the
E�cient Microcanonical Sampling (EMS) method developed by Severin et

al. [124]. A detailed description of this method is also found in Ref. [125].
In the microcanonical system, all states are equally probable. Therefore, the
probability of a spatial con�guration R must be proportional to the number
of momentum states available when the kinetic energy is EK = E � U (R).
The number of momentum states is proportional to the density of momentum
states,


K (EK) = constant � E3n=2�1
K : (4.4)

and the probability for a spatial con�guration is given by

probability (R) / (E � U (R))3n=2�1 . (4.5)

The microcanonical ensemble may now be simulated exactly like the canon-
ical ensemble, only replacing Eq. 4.1 by Eq. 4.5.
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4.2 Simulation methods

4.2.1 Molecular dynamics simulation

There are two dominant methods for simulation of atomic systems, molecular
dynamics (MD) and Monte Carlo (MC) simulation. Among these two, the
MD simulation is the most intuitive method with the great advantage that
the time-development of the system can be followed within a well de�ned
time-scale. In MD simulation, the newtonian equation of motion is solved
for all atoms in the system. MD is the natural choice when the dynamics of
the system is of importance. Hence, the cluster collisions will be simulated
by means of MD simulation.

The newtonian mechanics is based on energy conservation, i.e. the system
is microcanonical. In order to use MD simulation in the canonical ensemble,
thermostat techniques have been developed [123]. The melting simulations
that are to be presented below have been compared with simulations by
Gr�onbeck et al. [34] in which the MD technique with the Nos�e-Hoover ther-
mostat [35] was used.

4.2.2 Metropolis Monte Carlo simulation

In 1953, Metropolis et al. [126] presented a new simulation technique that
today is a standard for calculation of thermodynamical averages. Say that
in a given ensemble, the probability for a con�guration is given by

probability (�) / f (�) . (4.6)

The average of the quantity A (�) is then simply

hAi =
R
A (�) f (�)d�R

f (�) d�
(4.7)

Often, both A (�) and f (�) are analytical expressions but the dimensionality
of the integrals is so high that a numerical integration is impossible. An
alternative calculation would be to randomly generate con�gurations �i and
calculate the average

hAi =
P

iA (�i) f (�i)P
i f (�i)

(4.8)

Unfortunately, the distribution function f (�) is often a very nonsmooth
function in thermodynamical systems and f (�) is signi�cant only for a very
small fraction of all con�gurations. The contribution of Metropolis was to
develop a scheme to generate con�gurations according to f (�). The gener-
ated con�gurations will thus mostly be the ones that the system is likely to
occupy. This is called importance sampling. The average is then simply

hAi = 1

n

nX
i=1

A (�i) : (4.9)
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In practise, a simulation is started with the system in a con�guration
that is representative of equilibrium. A new trial con�guration is gener-
ated by a small random change of the present con�guration. The probabil-
ities of the present and the trial con�gurations are compared. If the ratio
f (�trail) =f (�present) is larger than a uniformly distributed random number
between zero and one, the trial con�guration is accepted as the next con�g-
uration in Eq. 4.9. Otherwise the next con�guration will be identical with
the present one. This procedure is iterated so that N con�gurations are gen-
erated. By some user-de�ned criterion it must now be checked that hAi has
converged su�ciently to the correct value. The presence of barriers between
di�erent parts of the phase space may however severely prevent an ergodic
exploration of the phase space and the converged average hAi may not be
correct. For a more detailed description of the MC and MD techniques, see
Ref. [123].

In this work MC simulations have been carried out in the canonical and
microcanonical ensembles. New con�gurations are generated by changing
the position of a randomly picked atom by a small displacement. The dis-
placement is adjusted to give approximately 50% rejection. In the further
discussion we will refer to MC "steps" and "macro steps". One step is the
trial displacement of one atom. In a system with n atoms, a macro step is
equal to n steps.

The great advantage of the MC technique is in my opinion that model
systems can easily be studied, since no restrictions are placed on the prob-
ability distribution f (�). For instance, the potential energy need not be
di�erentiable. Non-di�erentiable potentials are however a complication in
MD simulations.

4.2.3 The Reference System Equilibration method

The Reference System Equilibration method (RSE) was developed by Ming,
Nordholm and Schranz [127] and has to our knowledge only been employed
for test cases. But, as will be shown, the RSE is an excellentmethod by which
to obtain the anharmonic density of states for realistic systems. The DOS
is obtained by a simulation of the system (the cluster) and an appropriate
reference system such that the cluster can exchange energy with the reference
system. There is however no interaction between the two systems. In our
simulations the reference system consists of nH three-dimensional harmonic
oscillators but the reference system might be any system with a known DOS.

A combined system is created by fusing a cluster of n atoms and nH
three-dimensional harmonic oscillators. Due to energy exchange, the poten-
tial and kinetic energies of the cluster and the oscillators, respectively, will

uctuate resulting in distributions of potential energy of the cluster and of
the harmonic oscillators. The distribution of energy is determined by the
DOS of the cluster and the oscillators and this is the basic fact used in the
RSE.
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A state of the combined system is de�ned by all con�gurations and mo-
menta of all cluster atoms and harmonic oscillators. Since all states in this
combined microcanonical system are equally probable, the probability distri-
bution for the cluster to have total energy EC is given by

f (EC) =
1


CH (ECH)

C (EC)
H (ECH � EC) (4.10)

Here EC is the total energy of the cluster and 
C (EC) and 
H (EH) are the
DOS of the cluster and the reference system, respectively. The inverse of the
DOS of the combined system at the total energy ECH is 
�1CH (ECH), which
works as a normalization constant when ECH is �xed. As will be shown
below, the normalization constant is only known in very special cases. The
DOS of one harmonic oscillator is analytically known and by convolution,
the DOS of the reference system is obtained as


H (EH) =
1

h3nH� (3nH)

�
2m

C

�3nH=2
E3nH�1
H : (4.11)

where h is Planck's constant, EH is the total energy of the reference system,
m is the mass of an oscillator and 2C is the force constant of the restoring
force of one oscillator. Note that in the RSE context � denotes the gamma
function.

A combined spatial con�guration RCH = [RC;RH] is a vector of all
n+nH spatial coordinates. The potential energy is UCH (RCH) = UC (RC)+
UH (RH). The probability for such a con�guration is proportional to the
number of momentum states for the remaining kinetic energy.

f (RCH) / 
CH;kinetic (ECH;kinetic) / (ECH � UC � UH)
(3n+3nH )=2�1 : (4.12)

Although the spatial con�guration is speci�ed, kinetic energy might 
ow
between the cluster and the reference system. Hence, the total energy of the
cluster 
uctuates and is distributed according to

f (EC jRCH ) = B � 
C;kinetic (EC � UC) � 
H;kinetic (ECH � EC � UH)

= B 0 � (EC � UC)
3n=2�1 � (ECH � EC � UH)

3nH=2�1 ; (4.13)

where

B0 =
� (3 (n + nH) =2)

� (3n=2) � (3nH=2)
� 1

(ECH � UC � UH)
3(n+nH )=2�1

: (4.14)

By a microcanonical sampling,RCH will be distributed correctly in the phase
space and the distribution of the total cluster energy at �xed total energy of
the combined system is

f (EC) = hf (EC jRCH )i = (4.15)*
� (3 (n+ nH) =2)

� (3n=2) � (3nH=2)
� (EC � UC)

3n=2�1 � (ECH � EC � UH)
3nH=2�1

(ECH � UC � UH)
3(n+nH )=2�1

+
:
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Apart from the prefactor 
CH (ECH), the DOS of the cluster can be
calculated using Eqs. 4.10 and 4.15:


C (EC) = 
CH (ECH)
f (EC)


H (ECH � EC)
(4.16)

The numerical accuracy is acceptable only in a short interval of EC . In order
to obtain high accuracy of the DOS in the whole range from the minimal
energy E0 to above melting, a number of simulations with increasing ECH

must be run. With the condition that the DOS should be continuous the
overlapping of intervals of accurate representation can form the whole DOS.

By overlapping of intervals of accurate representation the total DOS is
obtained apart from the prefactor. When the DOS for di�erent isomers is
to be compared this prefactor must be known. For the clusters the DOS is
analytically known when the energy is so low that the atoms vibrate har-
monically. In the low-energy limit, the DOS is then


C (EC) =
�
2�

h

�3n�6 1
3n�6Q
i

!i

� �=4

� (3n � 3)
�2�V
h3

(2nm)3=2�16�
3

h3
(IaIbIc)

1=2�(EC � E0)
3n�4 :

(4.17)
The ingredients are the normal mode angular frequencies !i, the volume V ,
the product of the moments of inertia along the principle axes, IaIbIc, and
the minimal potential energy of the isomer E0. These properties can be
calculated for a given structure and the volume which the cluster is in can
be disregarded as it is equal for all isomers. Since the right-hand sides of
Eqs. 4.16 and 4.17 should be equal when the energy is low, the prefactor

CH (ECH) can be identi�ed. The scheme is now complete with respect to
the calculation of the absolute DOS for an isomer. In Fig. 4.2, the base-
ten logarithm of the DOS of Pd13 is drawn. Knowing the DOS, the heat
capacity can be calculated and compared with the results from the canonical
simulations (Fig. 4.3). The agreement shows that the DOS is correctly and
accurately determined by the RSE. The dashed curve is the heat capacity
according to the model DOS. The curves disagree for low temperatures. The
reason is that the model DOS forces the heat capacity to be constant for low
and high temperatures. In reality, the increasing anharmonicity of the solid
cluster causes the heat capacity to be increasing. The melting of Pd13 occurs
around EC = �30:2 eV. At this energy a convex part of ln
 in Fig. 4.2 can
be perceived as mentioned in Sec. 3.3.
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Figure 4.2: The base ten logarithm of the absolute DOS for Pd13 divided by
the volume is shown.
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Figure 4.3: The heat capacity of Pd13 is shown. The rings are from canon-
ical simulations, the solid line from RSE simulations and the dashed line
according to the model DOS.



Chapter 5

Thermal properties of the

palladium clusters

In the investigation of the thermal properties of the palladium clusters, the
focus has been three-fold. i) To investigate the evolution of properties like
the potential energy and radii of gyration with increasing temperature or
total energy. ii) To compare di�erent ensembles and simulation techniques
to �nd agreement and di�erences, advantages and disadvantages. iii) To
contribute to the development of solutions to the problem with phase barriers
in computer simulation.

In this work, Monte Carlo simulations with the cluster in the canonical
and microcanonical ensembles, respectively, have been used. The results will
be compared to simulations by Henrik Gr�onbeck and co-workers [34], who em-
ployed the Nos�e-Hoover (�xed temperature) molecular dynamics technique.
For the Monte Carlo simulations the program package MonteLab [128] was
used.

5.1 Evolution of properties with temperature

or total energy

5.1.1 Potential and kinetic energy

The average total energy versus temperature from the simulations at constant
temperature is given in Fig. 5.1 for the icosahedral clusters Pd13, Pd55 and
Pd147. The solid lines display the caloric curves according to the model DOS
which are calculated using Eq. 3.12 and the optimal parameters in Table 1 in
Paper I. The rounded transition from solid to molten phase and the accurate
agreement between data and the prediction of the model DOS supports the
two-state picture. It is obvious from the curves that the melting interval
becomes more narrow with increasing cluster size. The melting intervals
can also be seen in Fig. 3.3. The heat capacity in Fig. 3.3 corresponds
to the total energy in Fig. 5.1. The peak covers about 400 K for Pd13
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Figure 5.1: The graph shows the total energy per atom for Pd13 (rings), Pd55
(stars) and Pd147 (triangles) versus T according to the constant-temperature
simulations. The plusses represent the outcome from the MD simulations
with the Nos�e-Hoover thermostat [34]. The solid lines are the caloric curves
given by Eq. 3.12. The parameters of the model DOS are adjusted to �t the
simulation caloric curve. The vertical lines indicate the melting points given
by Eq. 3.16.

but only about 100 K for Pd147. The thin solid heat capacity curves show
the prediction of the model DOS. Also for the heat capacity the agreement
is good. The vertical lines in Fig. 5.1 indicate the melting temperatures
calculated by Eq. 3.16 as listed in Table 1 in Paper I.. Surprisingly, Pd13
melts at the highest temperature. With the simple assumption that the
melting is determined by the average coordination number in the cluster,
the melting temperature should gradually increase with increasing size [129]
with the bulk melting point as a limit. It has been observed that small
clusters do not act according to simple scaling laws [12, 130], but that Pd13
should melt at a higher temperature than the equally symmetric Pd147 was
not expected. However, small clusters with extreme melting temperatures
has been observed in experiments [12].

The plusses in Fig. 5.1, represent the results from Gr�onbecks MD simula-
tions with the Nos�e-Hoover thermostat [34]. For low and high temperatures,
the agreement with the MC simulations is good. However, for Pd55 and Pd147,
the MD-NH simulations suggest a higher melting temperature. The reason
for the discrepancy is not a fundamental di�erence in simulation technique.
The reason is that in the coexistence region the recurring phase switches that
should generate a correct ratio of the solid to molten phase, are obstructed
by phase barriers. The MD-NH simulations were simply not su�ciently long
and the solid phase was favoured.

The average potential energy minusE0 and the average kinetic energy as a



5.1 Evolution of properties with temperature or total energy 33

- 3.1 - 2.9 - 2.7 - 2.5
0

0.2

0.4
Pd

147
U - E0

E
kin

Total energy per atom   (eV)
E

ne
rg

y 
pe

r 
at

om
   

(e
V

)

Figure 5.2: The caloric curves from simulations at �xed total energy.

function of the total energy are calculated in microcanonical MC simulations
and the results for Pd147 are displayed in Fig. 5.2. The pentagrams and
the rings show simulation data and the solid curves are calculated using Eq.
3.13. Before melting, the potential energy is seen to gain more than half the
available energy. The reason is that the vibrations in the cluster turn more
and more anharmonic which leads to a higher heat capacity for the potential
energy than the kinetic energy. At melting the curves exhibit the S-bend that
is typical for two-state systems [117]. In bulk material the sign of melting is
that the kinetic energy is constant while the total energy increases. During
the melting, all added energy is put into the high-energy liquid structure.
In contrast a two-state system cannot melt gradually and thus the cluster
abruptly changes to the high-energy molten phase. The energy must be
taken from the kinetic energy and a consequent drop occurs. The caloric
curve in the microcanonical ensemble more obviously indicates a two-state
system than does the caloric curve in the canonical ensemble.

The optimal parameters in Table 1 in Paper I show accurate agreement
for the two ensembles, except in the case of Pd147. The reason for the discrep-
ancy is again the phase barrier as will be discussed later. This discrepancy
will also be seen for Pd147 in Fig. 5.3. In this �gure, the converted micro-
canonical potential energy is drawn versus temperature together with the
canonical data showing the equivalence between the ensembles.

5.1.2 Geometric properties and mobility

The geometry of clusters is reported to change with temperature. For some
clusters, a structural change has been observed before melting as when large
561-atom clusters change from a true Mackay icosahedron to an anti-Mackay
icosahedron [120]. The interaction between the atoms in the clusters was
modeled by the Morse potential. In our simulations no pre-melting struc-
tural changes have been observed. Upon melting the atoms become mobile
and they constantly change positions and neighbours, especially the surface
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Figure 5.3: The potential energy versus temperature is shown. The solid
lines show the converted microcanonical data. The lines are from the bottom:
Pd309, Pd147, Pd55 and Pd13. Data from simulations at �xed temperature are
shown as rings (Pd13), pentagrams (Pd55) and squares (Pd147).

atoms, but also the core atoms. The 
uctuations result in a split in the radii
of gyration. The radii of gyration along the principle axes are de�ned as

ri =

s
Ii
m
; i = 1; 2; 3; (5.1)

where Ii is the moment of inertia along the principle axis i, and m is the
cluster mass. For the solid icosahedral clusters the radii of gyration are
equal which can be seen in Fig. 5.4 for Pd55. At melting, however, the
radii split up and one radius of gyration is even decreasing. The same thing
happens for all the icosahedral clusters but the ratio of the maximal radius
to the minimal radius approaches unity with increasing cluster size. This is
in accord with the general knowledge that liquid droplets assume a spherical
shape to minimize the surface tension [131]. The vertical line shows the
melting point in Table 1 in Paper I. Since the change in radii of gyration
occurs at the same temperature, it is veri�ed that the phase change is indeed
a structural change.

The thick grey lines in Fig. 5.4 show the converted microcanonical results
which are in good agreement with canonical results. The results from the
MD simulations with Nos�e-Hoover thermostat are drawn as rings [34]. The
curves are in agreement with the Monte Carlo results except at the very
melting. The reason for the discrepancy is the same as for the potential
energy: the MD-NH simulations favoured the solid phase due to too short
time-development.

Another characteristic of the geometry is the radius of the cluster. We
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Figure 5.4: The maximal, medium and minimal radii of gyration are shown
versus T for Pd55. The star-lines show the results from the �xed-temperature
simulations. The thick grey lines are the converted results from the �xed-
energy simulations. The vertical line indicates the melting point. The curves
with rings are from the MD simulations with Nos�e-Hoover thermostat in Ref.
[34].

have used the mean distance to the centre of mass,

dCM =
1

n

nX
i=1

jxi � xCM j ; (5.2)

as a measure of the size. Here xi is the position of atom i and the centre of
mass is xCM . In Fig. 5.5, dCM for Pd55 is shown as a star-line (canonical
simulations) and thick grey line (converted from microcanonical simulation).
The curves exhibit two regions of linear increase of dCM which correspond to
the isobaric thermal expansivity of bulk material (see Fig. 5.10) [101, 107].
At the very melting the structure is made more loose, as expected. On the
cover of this thesis two snapshots of Pd147 show the cluster in the solid (left)
and the molten (right) phase. Clearly the shape is considerably modi�ed
with a more spherical shape of the solid phase.

The mobility of the atoms in the cluster can be measured by the Linde-
mann index and in our simulations we have observed a rapid increase from
approximately 0.05 to 0.3 at melting. Of importance is that � starts the steep
rise at slightly lower temperatures than the previously described quantities.
The reason for this is the presence of so-called 
oaters [119]. Floaters are sur-
face atoms that leave the surface to become mobile on the surface for a short
time before they fall down again. Although the structure, and hence the
phase, is still solid, atoms will switch positions causing � to increase dramat-
ically. The Lindemann index is a measure of 
uctuations and the accuracy
obtained in the simulations is worse than for averages. Consequently, � is the
only quantity such that the conversion from microcanonical into canonical
results does not yield full equivalence as seen in Fig. 5.6.
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Figure 5.5: The average distance to the centre of mass, dCM , versus T for
Pd55. The vertical line indicates the melting point.
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Figure 5.6: The Lindemann index � is shown versus T for Pd55. The star-
lines show the results from the �xed-temperature simulations. The thick
grey lines are the converted results from the �xed-energy simulations. The
vertical line indicates the melting point.
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Figure 5.7: The con�guration of Pd34 with minimal potential energy found
in our annealing simulations is shown.

5.1.3 The non-icosahedral cluster Pd34

The icosahedral clusters that we have presented so far all �t the model of
coexistence between two distinct and non-mixable states. As an example
of a cluster with a di�erent behaviour, Pd34 is presented here. This cluster
does not have a unique solid minimum-energy structure as the icosahedral
clusters probably do [105]. In contrast, in a MC simulation with annealing
temperature we found a couple of isomers with similar energy. The con�g-
uration with the lowest energy that we have found is depicted in Fig. 5.7.
The thermal evolution of the radii of gyration, the Lindemann index and
the heat capacity are shown in Fig. 5.8. The typical signs of a "�rst-order
phase change" are missing. There is no peak in heat capacity and the radii
of gyration do not exhibit a dramatic change at any temperature. The solid
structure is rather to be called a glassy state, since the cluster is frozen in a
highly asymmetric state. The only di�erence between the solid and molten
phases is that the mobility of the atoms is low at low T , but suddenly rises
at approximately 350 K. This kind of thermal behaviour has been observed
for, e.g., Al clusters [132].

5.2 Phase barriers

Simulations are in most cases based on the ergodic principle [123], i.e., that
from the initial con�guration all other states can be reached within a �nite
number of steps. It is a well known fact that the free energy barrier between
two phases may prevent a phase change on the time-scale of a simulation,
although the phase change should eventually occur [123, 133, 134, 135, 136,
137]. The phase barrier causes "broken ergodicity" or "quasi-ergodicity".

5.2.1 Bulk melting in simulations

Let us �rst study the problem in simulations of bulk systems. Using periodic
boundary constraints and the isothermal-isobaric ensemble [123], the melting
temperature of a compound may be found by observing at what temperature
the volume per particle abruptly rises. However, starting with the system in
the solid phase, it may take such a long time for the system to transform into
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Figure 5.8: Results are shown for Pd34 versus T . From above: the maximal,
medium and minimal radius of gyration, � and the heat capacity per atom.

the liquid phase that no transformation can be found in the course of a simu-
lation, even at temperatures above the melting point [135, 136]. Belonoshko
and coworkers found that the melting temperature might be overestimated
by several hundred kelvin due to the phase barrier [135]. A solution to the
problem is also proposed. In so-called two-phase simulations the simulation
box of active atoms is split into two parts [135, 136]. Initially, the atoms
in one part are arranged according to the solid phase and the other part is
from a truly liquid phase. With this method both phases are present and it
is supposed that at the interface, the stable phase will grow at the expense
of the other phase.

In unpublished simulations we have studied bulk palladium described by
the identical MBA potential and parameters using the two-phase method as
well as the one-phase (only solid phase present originally) method. The initial
active box of palladium atoms is depicted in Fig. 5.9. The simulation results
show signi�cant di�erences (see Fig. 5.10). In the one-phase simulations the
initial con�guration is the solid structure and the melting does not occur until
2000 K. With the two-phase method, the simulations at 1700 K or higher
temperatures go from two-phase to liquid phase structure, but at 1500 K
the system freezes. The results show the same behaviour as in the work of
Belonoshko and coworkers [135]. The experimental curve is taken from the
tables in Ref. [101].
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Figure 5.9: The initial con�guration of two-phase simulations of palladium
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Figure 5.10: The graph shows the volume per atom of palladium bulk in
isobaric-isothermal simulations at zero pressure. Both two-phase and one-
phase simulations are shown. The experimental values are included as a
reference.
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Figure 5.11: The graph shows the potential energy of Pd13 in the course of
a simulation at 1100 K. Each dot is an average over 1000 simulation steps.

5.2.2 Phase switches in small clusters

The situation is di�erent for the small clusters. At temperatures in the
coexistence interval, theory predicts the cluster to constantly switch between
the phases. That was indeed observed for Pd13 at 1100 K (see Fig. 5.11). The
total number of steps that the cluster spends in the solid and molten phases,
respectively, determines the equilibrium constant. Thus it is important to
have many switches during a simulation in order to be con�dent that ergodic
sampling is achieved.

In contrast, in the course of a simulation of Pd55 for a reasonable time,
very few phase changes occur at 900 K (see Fig. 5.12). If this simulation had
been interrupted after 400 000 macro steps, which would not have been a re-
markably short simulation, the cluster would have behaved as solid through-
out the simulation. When a phase change occurs it is completed rapidly.
With the few phase changes seen for Pd55, an accurate determination of the
equilibrium constant at this temperature is impossible. This is the reason
why phase barriers make the melting temperature determination inaccurate.
Furthermore, the randomness of the precise times when the phase changes
occur is the reason why the melting temperature calculations of Pd147 based
on the canonical and microcanonical simulations yield di�erent results. In
the microcanonical simulations a phase change from solid to liquid happened
to occur at a lower energy.

When the number of atoms increases, the melting interval shortens [112].
Thus, already at fairly small sizes the potential energy step at the melting
temperature will look like at bulk melting, even if it is not. In contrast, in
the microcanonical caloric curve a two-state system, regardless of size, can
always be distinguished from bulk. In Fig. 5.13, the microcanonical caloric
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Figure 5.12: The graph shows the potential energy of Pd55 in the course of
a simulation at 900 K. Each dot is an average over 1000 simulation steps.

curve of Pd309 is drawn.
The caloric curves show an S-bend at melting that is typical of a two-

state system. However, this might be largely an artifact due to the phase
barrier. Let us assume that Pd309 is so big that it can hold both solid and
molten fractions simultaneously. (That has been observed in simulations of
for instance Au459 [138].) We might then expect that the proper caloric curve
should follow the grey line. However, due to the phase barrier the cluster is
in intact solid phase until a total energy is reached where it should be entirely
molten. Such a situation could not be distinguished from that pertaining to
a two-state cluster. Conclusion: due to phase barrier, a caloric curve like the
one in Fig. 5.13, is not a proof of a two-state system. Instead, a criterion to
prove a two-state system is to �nd frequent phase switches in a simulation
in the coexistence region.

5.2.3 Free energy barrier character

Let us go back to the curve showing the potential energy versus number of
macro steps for Pd55 at 900 K (Fig. 5.12). The phase barrier is generally to
be found in the dimension of free energy [106]. In the canonical ensemble, the
free energy consists of a potential energy part and an entropic part. What
is the character of the phase barrier for the cluster? In Fig. 5.12, the cluster
is initially in the solid phase but it melts after about 400 000 macro steps.
The melting involves a step upwards in potential energy. Thus the melting
is prevented by this increase in potential energy. An entropic barrier may be
present as well. In contrast, when the cluster switches from molten to solid
phase, there is no barrier in potential energy, only a direct step downwards.
The potential energy does not obstruct the solidi�cation at all. Still, this
phase change is rare on the time-scale of a simulation due to a free energy
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Figure 5.13: The graph shows the caloric curves of the constant-energy sim-
ulations for Pd309. The rings show the kinetic energy and the pentagrams
show the potential energy minus E0 versus total energy. The solid lines are
the caloric curves predicted by the model DOS. Grey lines show the caloric
curves if the cluster melts in a bulk-like manner. The inset shows a magni�ed
part of the �gure.

barrier. Since the potential energy takes no part in the barrier, it must be
of entropic character only.

What is an entropic phase barrier? Phase space regions might be sepa-
rated by a bottleneck which is not high in potential energy but narrow. By
narrow we mean that a systemmust take a speci�c path through a bottleneck
to go from one part of the phase space to another. Such a bottleneck might
be associated with a low entropy which implies a high free energy [139].

5.3 Simulation of separated phases using the

Reference Equilibration Method

For each of the clusters Pd55 and Pd147 the DOS of the phases are to be com-
pared. In order to do that the DOS for the solid cluster must be calculated
for energies where it is superheated. For the molten cluster the situation is
even more di�cult, since the cluster must be supercooled all the way down to
the low-energy limit where the vibrations are harmonic. Another di�erence
between the phases is that the solid phase consists of one dominant isomer
[105], but a huge number of isomers contribute to the molten phase. Doye and
Wales extrapolated the number of molten isomers to approximately 1021 in a
Lennard-Jones cluster with 55 atoms [117]. The DOS of all of theses isomers
cannot be calculated. Instead, only one isomer has been chosen to represent
the whole molten phase. This isomer has been generated from simulations
where the cluster is annealed from a truly molten state with di�erent cooling
rates down to 1 K. With a moderate cooling rate, the cluster is trapped in
a smaller and smaller part of the phase space so that it describes a smooth
caloric curve and smooth curves of for instance the radii of gyration versus
temperature (see Figs. 3-5 in Paper II.) The glassy isomers found at 1 K
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Figure 5.14: The drawings show the glassy isomers of Pd55 and Pd147 that are
used as initial con�gurations in simulations of supercooled molten clusters.

by this procedure are depicted in Fig. 5.14. It must be noted that in the
RSE simulations of the supercooled molten cluster, the cluster is probably
not con�ned to the potential well of exactly one isomeric form but to many
equivalent adjacent local minima separated with very small barriers. How-
ever, in the simulation at the lowest energy the supercooled cluster may be
con�ned to only one or a few such isomers and since the total DOS curve is
constructed by overlapping DOS curves with the �xed point at low energy,
the total DOS approximately corresponds to a single isomer.

When these isomers are found RSE simulations are performed for the
combination of the cluster with 55 and 147 oscillators, respectively. The
original recipe [127] is that the reference system should have a DOS of sim-
ilar magnitude as the examined system and we have found no reason to do
di�erently. One complication is that the supercooled molten isomer tends to
reshape to a structure with a lower potential energy and that the superheated
cluster readily melts. A method to keep the cluster in a speci�c isomeric form
in MD simulation has been proposed by Chekmarev and Krivov, [140]. We
have simply interrupted the simulation when the cluster leaves the desired
isomeric form.

The absolute DOS for Pd147 for the di�erent isomers and the caloric
curves based on these DOS are illustrated in Fig. 5.15 and Fig. 5.16, re-
spectively. At �rst we see that the DOS fairly captures the caloric curve
of the supercooled molten cluster. The vertical line in Fig. 5.15 indicates
the melting energy of Pd147 calculated in the microcanonical simulations in
Paper II. The reason why the RSE simulations yield a considerably higher
melting energy is that the number of molten isomers must be included in the
DOS of the molten phase and the DOS in Fig. 5.15 corresponds to only one
molten isomeric form. In order to get a melting energy in agreement with the
microcanonical simulations, the RSE simulations suggest that the number of
equivalent molten isomers is 1:1 � 1018 for Pd55 and 4:1 � 1041 for Pd147.
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Figure 5.15: The graph shows the base ten logarithm of the absolute DOS for
Pd55 divided by the volume. The dashed curve represents the solid isomer
and the solid curve represents the molten isomer.
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Figure 5.16: The caloric curve of Pd55. Dashed line with dots: data from
constant-temperature simulations. Upper solid lines: The caloric curve of
molten isomer according to RSE DOS. Lower solid lines: The caloric curve
of solid isomer according to RSE DOS. Jagged: The potential energy versus
temperature in the annealing simulation.
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5.4 Alternative techniques in cluster simula-

tion

J-walking and q-jumping Monte Carlo simulation J-walking MC is
used to overcome phase barriers in simulations [115, 141]. First a simulation
is run at a high temperature T1 which is su�ciently high so that the barrier is
easily overcome. Then a simulation is run at a lower temperature T2 at which
the barrier may cause a quasiergodicity. However, in the latter simulation the
systemmay every now and then try to rearrange from a con�guration � into a
con�guration �T1 generated at T1. The probability for such a rearrangement
is

probability = min
�
1; exp

��
1

kBT1
� 1

kBT2

�
(E (�T1)�E (�))

��
: (5.3)

A modi�cation of the J-walking MC method is the q-jumping MC method
[142]. Similarly, con�gurations from a simulation at higher temperature are
included in a simulation with quasiergodicity. It was found that the phase
switches occurred more frequently using q-jumping than with ordinary canon-
ical MC [142]. More methods of this kind can be found in Ref. [143].

Finite time variation method The Finite time variation (FTV) method
is designed to obtain the free energy on the basis of canonical Monte Carlo
simulations [144]. Let Hcluster be the Hamiltonian that describes the cluster
and that Href is another Hamiltonian. The cluster described by Hcluster is
brought to equilibrium at a speci�c temperature and in the simulation the
Hamiltonian is gradually changed from Hcluster to Href . The change in free
energy during the process Hcluster ! Href can be calculated and thus the
free energy di�erence to that of the reference state is obtained.

The histogramming Monte Carlo method and the Multihistogram

method A method that is similar to RSE is the histogramming Monte
Carlo method [49, 50]. In a canonical ensemble of the cluster, the probability
of having the potential energy U on the condition that the temperature is T
is

f (U jT ) = constant � 
pot (U) � exp
�
� U

kBT

�
: (5.4)

where 
pot (U) is the DOS of the potential energy. In a MC simulation
at temperature T the distribution f (U jT ) is obtained and 
pot (U) can be
calculated apart from the constant. As in the RSE method the calculation

pot (U) is accurate only for a narrow energy interval but with a number
of simulations at di�erent temperatures a continuous curve of 
pot (U) for a
wide energy interval can be constructed. Subsequently the total DOS 
 (E)
can be obtained by convolution of 
pot (U) and the analytically known DOS
for the kinetic energy 
kin (Ekin) (see Paper I).
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Even more similar to RSE is the multihistogram method [145, 146]. It
is identical to the histogramming Monte Carlo method apart from that the
MC simulations are run at constant energy.



Part II

Cooling and collisions





Chapter 6

Simulation details

6.1 Cluster-gas interaction

The interaction between each cluster atom and the gas atom in the collisions
has been modeled by the Lennard-Jones potential

U (rj) = 4�

0
@ �

rj

!12

�
 
�

rj

!6
1
A ; j = 1; :::; n: (6.1)

where rj is the distance between the gas atom and cluster atom number j. In
Paper III, the He-He parameters were used to describe the interaction Pd-
He. These parameters underestimate the interaction. Instead, in Papers

IV-VII the interaction was approximated by the interaction between Xe
(which is the rare gas atom in the same row of the periodic table as Pd) and
the colliding rare gas. Subsequently, the Xe-gas parameters were estimated
by the Lorents-Berthelot rules [147]:

�He�Xe = (�He�He + �Xe�Xe) =2 (6.2)

�He�Xe =
p
�He�He�Xe�Xe (6.3)

The well depth in
uences the energy transfer in collisions by accelerating the
gas atom before the collision and possibly causing multiple-encounters. Of
importance for the collisions is also the hardness (derivative) of the potential
in the very hit. In simulations of collisions of large argon cluster on a platinum
surface, Svanberg and Pettersson [148] found that the tail of the potential is
of importance for the fragmentation dynamics. In their case, the Lennard-
Jones potential described the long-range interaction better than the Morse
potential.

For the integration of the equations of motions we have used the Runge-
Kutta fourth order algorithm [149] with the timestep 0.5, 0.5, 0.75 and 1.0
fs for the collisions of Pd-clusters with He, Ne, Ar and Kr, respectively. The
total energy is conserved to at least 10�5 eV. The MD program was originally
written by Seong-Gon Kim.
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6.2 Generation of initial coordinates and ve-

locities

Collisions between Pd13 and various rare gas atoms have been simulated. The
rare gases have been He, Ne, Ar and Kr. Also a few simulations for Pd55 were
performed. The very shallow and short-range He-He interaction in Paper

III made the collisions of almost hard-sphere character. It is therefore not
certain that the trends observed can be extrapolated to collisions where the
gas-cluster interaction is stronger. The main aim of the simulations was
to calculate the average energy transfer at the gas temperature Tg and the
cluster temperature Tc. Later, a need to calculate the average energy transfer
at Tg and diverse internal, Tint, and translational temperatures, Ttrans, of the
cluster arose.

In an ensemble of realistic collisions at the temperatures Tg, Ttrans and
Tint, the following parameters are described by distribution functions.
i. The initial cluster coordinate con�guration, R = [x1; y1; z1; x2; :::; zn], is
distributed according to the Boltzmann distribution

f (R) / exp

 
�U (R)

kBTint

!
; (6.4)

where U (R) is the potential energy of the con�guration.
ii. The initial internal velocity in the x direction of an atom in the cluster
should be sampled according to the Maxwell-Boltzmann distribution

f (vx;j) / exp

 
�mPdv

2
x;j

2kBTint

!
; j = 1; :::; 13; (6.5)

with a subsequent subtraction of the centre of mass velocity. Here mPd is
the mass of one palladium atom. Analogous sampling applies for the y and
z directions. iii. The initial relative speed vR of the gas and the cluster is
distributed according to

fvR (vR) / v3R exp

 
��v2R
2kB

!
; (6.6)

where

� =

mg

Tg
mc

Ttrans
mg

Tg
+ mc

Ttrans

: (6.7)

Here mg and mc are the gas and cluster masses, respectively.
iv. The gas atom should be placed so that the impact parameter b is distrib-
uted according to

fb (b) =
2b

b2max
; (6.8)

where bmax is the maximal b for which the collision occurs.
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In the simulations the distributions fb (b) and fvR (vR) for the generation
of b and vR have, for reasons of sampling e�ciency been replaced by ~fb (b)
and ~fvR (vR). The modi�ed distribution of b is de�ned as

~fb (b) =

8><
>:

2
 0 < b < b1

 b1 < b < bmax
0 bmax < b

: (6.9)

The value of 
 is given by the normalization condition on ~fb (b). The reason
for the use of ~fb (b) is that more collisions are then simulated for small b,
for which the energy transfer is most signi�cant. In the calculation of the
average energy transfer, the weight factor fb (b) = ~fb (b) will compensate for
not using fb (b) for the generation of b.

The distribution ~fR (vR) is linear in v2R and normalized and is a compro-
mise between the distributions in Eq. 6.6 in the temperature intervals 100
K < Tg < 900 K and 100 K < Ttrans < 1100 K (See Fig. 2 in Paper VI).

The advantage gained by the use of ~fR (vR) is that it can be de�ned to be
independent of the temperatures. By use of the weight factor fR (vR) = ~fR (vR)
that depends of the temperatures, the same set of collisions can be used to
calculate the average energy transfer for various temperatures. In contrast,
one set of simulations must be run for each Tint, since the distribution of the
initial internal con�guration of the cluster corresponds to a unique internal
temperature.

In unimolecular chemical reactions, it is the internal excitation that de-
termines the reaction rate [54]. The translational temperature is not directly
relevant. However, in order to obtain zero energy transfer when the gas and
the cluster are at equal temperature, the energy transfer to the translational
mode of the cluster must be included. Consequently, the translation of the
cluster before the collision must be known. The energy transfer to the cluster
as well as to the translational and internal degrees of freedom, respectively,
can be calculated for the collision i as

�Etot;i = �mg

2

�
(vg;i +�vg;i)

2 � v2g;i

�
(6.10)

�Etrans;i =
mc

2

�
(vc;i +�vc;i)

2 � v2c;i

�
(6.11)

�Eint;i = �Etot;i ��Etrans;i (6.12)

Here vg and vc are the initial gas and cluster velocities, respectively, and �vg
and �vc are the changes in gas and cluster velocities, respectively. (Note that
in Papers IV and VII, the energy transfer is de�ned as from the cluster,
i.e with opposite sign. Throughout this summary the energy transfer is
considered to be to the cluster.) The dynamics of the collision and hence
�vg and �vc are independent of the absolute initial velocities. Therefore
the absolute velocities vc;i and vg;i may be generated for collision i after the
simulation has been run. The advantage is again that one set of collisions
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can be used for the calculation of the average energy transfer for various Tg
and Ttrans.

In computer experiments we found that, for a given relative velocity vR,
the conditional distribution of the initial cluster translational velocity vc is

f
�
vckjvR

�
/ exp

0
B@�

�
vck + �vR

�2
2�2

1
CA (6.13)

f (vc?jvR) / exp

 
�v

2
c?

2�2

!
(6.14)

where

� =

mg

Tg
mg

Tg
+ mc

Ttrans

(6.15)

and

� =

vuut kB
mg

Tg
+ mc

Ttrans

: (6.16)

vck is the component of vc parallel to vR and vc? = vc�vck is the component
of vc perpendicular to vR. By simulation of N collisions, the average energy
transfer at the temperatures Tg, Ttrans and Tint may now be calculated by

h�Ei
Tg;Ttrans;Tint

=

1Z
0

bmaxZ
0

h�Eib;vR � fb (b) fR (vR) dbdvR

=

1Z
0

bmaxZ
0

h�Eib;vR �
fb (b) fR (vR)
~fb (b) ~fR (vR)| {z }

g(b;vR)

~fb (b) ~fR (vR) dbdvR

�
NP
i
�Ei � g (bi; vR;i)
NP
i
g (bi; vR;i)

: (6.17)

Especially, the energy transfer for collisions with impact parameter in the
range b0 < b < b00 is obtained by

h�Ei
Tg;Ttrans;Tint;b

�
NbP
i
�Ei � g (bi; vR;i)
NbP
i
g (bi; vR;i)

; (6.18)

where the Nb collisions with b0 < b < b00 are included in the sums.



Chapter 7

Categories of collision

trajectories

7.1 Single encounter collisions

In contrast to other simulations related to unimolecular reaction rates [150]
the cooling simulations for our clusters require the energy transfer close to
equilibrium. Our simulations are therefore performed in temperature ranges
around the equilibrium. In the simulations we have observed three classes
of trajectories. The �rst and second are for single-encounter collisions. The
trajectories with very small b and with large b di�er in character. The �rst
intriguing phenomenon is that collisions with small b tend to heat the internal
temperature of the cluster but collisions aiming further out tend to cool the
cluster. The average energy transfer versus b in collisions of the type Pd13�Ne
and Pd13�Kr are shown in Fig. 7.1. To our knowledge this phenomenon has
not previously been reported. The reason why only non-crossing curves have
been reported before [51, 151, 152], we suppose, is because the temperature
di�erence between the colliding species was too large. The phenomenon is
only visible for the internal degrees of freedom. The translational energy
transfer is constantly zero for all b when Tg = Tc.

One fundamental necessity of molecular dynamics simulation is that the
results should be time reversal invariant. Thus, if all the trajectories were
to be run time reversed the average results should be the same if the gas
and the cluster are in equilibrium. Since the cluster heating trajectories with
small b will become cluster cooling trajectories when time is reversed, these
trajectories must start with a larger b in the reversed direction. Consequently,
trajectories with small initial b must end up with, on average, a larger b and
vice versa. This has indeed been shown to be the case for the Pd13�Kr
collisions. (Fig. 9 in Paper VI).

The two classes of trajectories can also be distinguished by the way the
gas atom velocity direction changes in the course of the collision. The average
angle, ', between the initial and �nal velocity of the gas atom is calculated
for various impact parameters. A second average of the angle, 's, is de�ned
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Figure 7.1: The graph shows the average energy transfer versus b in collisions
with Pd13 at Tc = 700 K. The errorbars show 95 % con�dence intervals. Solid
curve: Kr, Tg = 100 K, Dotted: Ne, Tg = 100 K, Dashed: Kr, Tg = 700 K,
Dashed-dotted: Ne, Tg = 700 K.

by considering an angle to be positive if the gas atom is bent towards the
cluster and else negative. The two averages ' and 's are drawn for collisions
between Pd13 and Kr at Tg = Tc = 700 K in Fig. 7.2. For small b, the
encounter is hard and the gas atom bounces o� the cluster, leading to a large
' and a negative 's. For very large b we �nd that ' = 0 because the gas
atom passes the cluster without notice. In between, however, 's is positive,
indicating that the gas atoms are attracted by the cluster but never really
experience the repulsive forces near the cluster.

The di�erent character of the trajectories can also be found in the change
of cluster angular momentum J = jJj, where

J (R) =
nX
i=1

mixi � vi (7.1)

Here xi and vi are the position and velocity of cluster atom i. When Tg = Tc
the net change in J is zero. However, collisions with small b excite J but
larger b leads to a cooling of J . (Fig 11 in Paper VI).

The change in b in the course of a collision is in agreement with 's. When
b is very small, the gas atom bounces o� and since the collisions are rather
chaotic the outgoing b will on average be larger than the incoming b. For
larger initial b, the net attraction of the gas atom causes b to decrease. This
e�ect was found for all the gases He, Ne, Ar and Kr to approximately the
same extent. The attraction of the gas atom is however not the only reason
for the average decrease in b. A few simulations were run where the gas-
cluster potential was changed into hard-sphere character. Although the gas
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Figure 7.2: The graph shows the average angle between the initial and �nal
velocity of the gas atom as a function of the initial impact parameters. In the
dotted curve an angle is counted as positive if the gas atom is bent towards
the cluster and negative if it is bent away.

atom experienced no attraction to the cluster, b decreased on average for
large b and the energy transfer still had the same shape as in Fig. 7.1.

The curves of the energy transfer versus b are mostly found to exhibit a
plateau for small b, followed by a steep decrease and a tail [51, 151, 152, 153].
The di�erence between those earlier simulations and ours is that we have
used a small di�erence in temperature between the colliding species. Even in
our simulations the cross over phenomenon in the energy transfer was only
observed near thermal equilibrium.

7.2 Multiple encounters and sticking

The third class of collisions that we have observed consists of multiple en-
counter and sticking collisions. If the energy of the incoming gas atom is very
low, a possible loss of its energy might lead to the result that the gas atom
cannot escape the cluster. In such a case, the gas atom will be re
ected by
the potential well and return for a second encounter. As long as the complex
does not evaporate cluster atoms or collide with a third body, an energy

uctuation will eventually eject the gas atom. Still, if the lifetime of the
complex is long, the corresponding capture is called sticking. The phenom-
enon is closely related to sticking on bulk surfaces [52, 53, 154]. Baule, one
of the pioneers in energy transfer studies, vividly expressed sticking in 1914
as follows [157].

Manche Molek�ule werden einmal, manche zweimal, manche
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Figure 7.3: A collision between Pd13 and Ar is shown. The argon atom �nally
leaves the cluster after 795 encounters with palladium clusters and 733 ps.

�ofter mit einemMolek�ul des festen K�orpers zusammenrennen, ehe
sie in den Gasraum zur�uckkehren, ja, manche Molek�ule werden in
das Innere des festen K�orpers eindringen und erst, nachdem sie
lange Zeit zwischen seinen Molek�ulen hin und her geworfen sind,
das Freie wieder�nden.

Sticking is also of interest in cluster reactivity research [45, 155]. In the most
extreme trajectory that we have observed, an argon atom performed 795
encounters before leaving the palladium cluster. The collision lasted for 733
ps. The trajectory is found in Fig. 7.3. The cluster temperature is 100 K and
the initial relative speed in this collision equals the mean relative speed at
Tg = 65 K. Each extra encounter in a collision leads in general to extra energy
transfer. Thus, multiple encounters increase the energy transfer e�ciency for
the whole collision. In other words, the energy transfer e�ciency is likely to
be higher for cold gas than for warm gas. In Fig. 7.4. the distance from
the argon to the nearest palladium atom is drawn versus time. This �gure
illustrates how the energy of the colliding complex 
uctuates. At about 375
ps the gas atom has gained energy from the cluster and is almost escaping.
However, in the preceding encounters, energy is given back to the cluster.
Not until at 733 ps does an energy 
uctuation lead to the escape of the
argon atom. The grey scale of the three-dimensional trajectory in Fig. 7.3
shows a gas atom that irregularly jumps over the cluster surface. Thus, the
gas atom is not stuck to a speci�c palladium atom or a cluster site.

The potential well between a surface of a bulk solid or a cluster and
for instance an N2 molecule shows two distinct minima. A more shallow well
further out from the surface and one deeper, close to the surface. They repre-
sent physisorption and chemisorption, respectively [107]. In physisorption the
gain in energy is due to dispersion attraction between surface and adsorbate,
but chemisorption is due to electron transfer between surface and adsorbate
[59, 156]. The Lennard-Jones potential can only describe pysisorption, since
it represents interaction due to dispersion attraction. Hence, physisorption is
the only kind of sticking that we have observed but since the rare gas atoms
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Figure 7.4: The distance from the argon atom to the nearest palladium atom
is shown as a function of time for the trajectory in Fig. 7.3. A magni�cation
of a small part of the curve is shown in the inset.

are inert, the Lennard-Jones potential is su�cient. To study chemisorption
more advanced analytical potentials [34] or ab initio calculations are required
[158, 159, 160].
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Chapter 8

Energy transfer

8.1 Statistical models

The average energy transfer per collision between Pd13 and the He, Ne, Ar
and Kr atoms is shown in Figs. 8.1 and 8.2. Both �gures show the typical
behaviour of the average energy transfer. First, in the �gure with �xed
cluster temperature and varying gas temperature Tg, all the curves turn
linear at high Tg. At high gas temperature, the collisions are to a large
extent of single-encounter type and the energy transfer is a linear function
h�Ei � k (Tg � Tc). At low gas temperature the energy transfer exceeds the
linearity due to multiple-encounter character of the collisions. In the second
�gure with �xed gas temperature, the energy transfer is a linear function of Tc
but increases in e�ciency at higher temperatures. The increasing e�ciency is
due to the increasing softness and eventual melting of the cluster. In Paper
III, collisions with "softer" intra-cluster potential parameters were studied.
The simulations showed that the softer the vibrations were within the cluster,
the more e�cient was the energy transfer.

The �gures suggest that the energy transfer might be modeled by a sim-
ple proportionality to Tg � Tc, at least for a single encounter. The energy
transfer per collision at low temperature might then be explained by the
presence of multiple encounters. In the following sections the energy transfer
of the simulations will be analyzed using three statistical models developed
by Nordholm and co-workers [86, 87, 88].

8.2 Collision cross section

One of the common features of the statistical models is that the energy
transfer in a collision is assumed to be independent of the impact parame-
ter apart from the distinction between "hits and misses". This distinction
is implied by the de�nition of the cross section. In contrast, in simulated
collisions, the character of a collision is very much dependent on the actual
value of the impact parameter. Even the separation between hits and misses
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Figure 8.1: The average energy transfer to Pd13 is shown for collisions with
He (solid curve), Ne (dashed-dotted), Ar (dashed) and Kr (dotted). The
cluster temperature is 700 K. The errorbars show 95 % con�dence interval.
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Figure 8.2: The average energy transfer to Pd13 is shown for collisions with
He (solid curve), Ne (dashed-dotted), Ar (dashed) and Kr (dotted). The gas
temperature is 300 K. The errorbars show 95 % con�dence interval.
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is arbitrary in simulation as the energy transfer is strictly non-zero for any
impact parameter according to classical mechanics when potentials such as
our chosen Lennard-Jones interaction are used. Since the energy transfer
decreases with b (in unpublished calculations we have found that the energy
transfer decreases as b�12 for large b when the gas-cluster interaction is of
Lennard-Jones (12-6) character), the average energy transfer depends on at
what b-value trajectories will be split into hits and misses. When compar-
ing data from simulations with the predictions of the statistical models, a
realistic collision cross section must therefore be used.

In collisions where the temperatures of the colliding species are very di�er-
ent, the energy transfer versus b often shows a plateau for small b, followed by
a steep decrease and a long (in�nite) tail [51, 151, 161, 152, 162] An intuitive
choice of realistic cross section is then de�ned by an impact parameter cut-
o� approximately where the tail starts. However, when Tg � Tc the energy
transfer versus b will change from positive to negative before it approaches
zero for large b, as seen in Fig. 7.1. Instead of using the h�Ei versus b
curve for cross section estimations, we have used the hb j�Eji versus b curve.
The energy transfer, regardless of sign, is a measure of the strength of the
gas-cluster interaction. In Fig. 8.3, the curve hb j�Eji versus b is drawn for
Pd13 colliding with Kr and Ne atoms at Tg = Tc = 700 K. These curves are
now used to de�ne a proper collision cross section. The cross section radius,

csr =
q
cross section =�, of the collisions we de�ne by the relation

csrR
0
hb j�Eji db

1R
0
hb j�Eji db

= 0:95: (8.1)

Such a de�nition is of course arbitrary to some degree.
The cross section radius varies only a few percent with cluster temper-

ature but is more sensitive to the gas temperature. In Fig. 8.4, csr at
Tc = 700 K is drawn for various gas temperatures and di�erent gases. The
cross section radius increases signi�cantly with decreasing gas temperature.
This result is not surprising. When the gas temperature is low, i.e. the gas
atom speed is on average low, the attraction of the potential can capture
gas atoms for far larger impact parameters than in the case of high Tg. The
energy transfer results presented in Papers VI and VII are related to this
de�nition of the cross section. In Papers III-V a �xed cross section of 6.5
�A was used.

8.3 ECT

In the Ergodic Collision Theory [86] each collision is assumed to lead to
microcanonical equilibrium between the two colliding species. The energy
of the incoming gas atom is on average hEgi = 3kBTg=2 and the energy
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Figure 8.3: hb j�Eji versus b for collisions with Kr and Ne. The gas and
cluster temperatures are each 700 K. The shaded areas show 95% of the
total areas.
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Figure 8.4: The graphs shows the collision cross section radii versus gas
temperature according to the de�nition in Eq. 8.1. The collisions are between
Pd13 at Tc = 700 K and Kr (pentagrams), Ar (rings), Ne (triangles) and He
(stars).
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of the cluster is hEci = f(Tc), which is the caloric curve in Fig. 5.1. The
microcanonical equilibrium established in the collision is written as an energy
balance,

3kBTg=2 + f (Tc) = 3kBT
0=2 + f (T 0) : (8.2)

The heat capacity is considerably larger for the cluster than for the gas atom
and thus a single collision will change the cluster temperature only slightly.
We can approximate f (T 0)� f (Tc) � C (Tc) (T 0 � Tc) ; where C is the heat
capacity of the cluster. Using Eq. 8.2, the ECT energy transfer is found to
be

h�EiECT = f (T 0)� f (Tc) = C (Tc)
3kB=2

3kB=2 + C (Tc)
(Tg � Tc) : (8.3)

The energy transfer in collisions of collisions with van der Waals interaction is
normally far from complete in the ECT sense. The energy transfer e�ciency
can be described by the factor �E de�ned as

�E =
h�Eisimulation

h�EiECT
: (8.4)

In an investigation of highly energized organic molecules in collisions with
small inorganic medium molecules, B�orjesson et al. [163] found �E to be
between 0.05 and 0.25. In Fig. 8.5, the e�ciency factor is shown for collisions
at Tc = 700 K. The �rst observation is that the e�ciency is higher when
the gas temperature is low as mentioned above. Secondly, in the single-
encounter regime, the e�ciency is independent of temperature and increases
with increasing gas atom size. When the mass of the gas molecule is high,
the collision event takes longer time which allows for a larger energy transfer.
Furthermore, there is a Baule formula predicting increasing e�cient energy
transfer when the masses of colliding species approach each other [157, 164].

8.4 PECT

The very encounter of the gas atom and the cluster de�ned in terms of
strong interaction is a rapid event and during the short period of energy
transfer, only of few degrees of freedom participate. That is the starting-point
of the Partially Ergodic Collision Theory (PECT) [87, 88]. In this theory
microcanonical equilibrium is assumed to be established between subsets of
n degrees of freedom in the cluster and m in the gas atom. The energy
balance of the equilibrium is

mkBTg=2 + nkBTc=2 = (m+ n) kBT
0=2; (8.5)

and the energy transfer is

h�EiPECT =
mn

2 (m+ n)
kB (Tg � Tc) : (8.6)
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Figure 8.5: The graph shows the energy transfer e�ciency �E according
to ECT versus gas temperature in collisions with Pd13 at Tc = 700 K. Kr
(pentagrams), Ar (rings), Ne (triangles) and He (stars).

Since the energy transfer e�ciency increases with decreasing gas tempera-
ture, the PECT parameters m and n will increase with decreasing gas tem-
perature. One reason can be that at low gas temperature the encounters
are slower and more degrees of freedom can indeed participate. A second
explanation is that the number of participating degrees of freedom have not
increased at low gas temperature but the increased energy transfer e�ciency
of the collision is due to multiple encounters. The rare gas atoms have no
internal degrees of freedom and if we assume that the only one of the trans-
lational degrees of freedom participates we should use m = 1. Solving the
equation h�EiPECT = h�Eisimulation at Tc = 700 K and Tg = 900 K, we
found n = 0:2, 0.7, 1.8 and 2.5 for He, Ne, Ar and Kr, respectively.

8.5 PEMET

It has been shown that statistical models that include the capture strength
have a relatively higher predictive power than simpler models [153]. Such
a model is the The Partially Ergodic Multiple Encounter Theory, PEMET,
which was originally developed by B�orjesson and Nordholm [87, 88]. When
the gas atom is cold it might be trapped by a potential well at the cluster
surface. This mechanism is supported by our simulations. In the extreme
case as in Figs 7.3 and 7.4, the gas atom is trapped for a long time but in
most multiple encounter collisions only a few encounters occur before the gas
atom escapes. In PEMET a collision is thought of as a series of encounters
ended by the escape of the atom (or generally, the gas molecule). In each
encounter, microcanical equilibrium is established between n and m degrees
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of freedom in the cluster and the gas atom, respectively. After the hit, the
gas atom turns away from the cluster, but only if it has su�cient energy to
climb the potential well between the cluster and the gas atom can it escape.
If not, a total redistribution of energy within the cluster and within the gas
atom is assumed before the gas atom comes around for a second hit. A more
detailed description of PEMET is found in Paper VII.

PEMET includes many simpli�cations. First, the cluster-gas potential
is assumed to be of square-well type with the depth V0. Second, between
each encounter the cluster and the gas atom is assumed to be fully relaxed.
This approximation is supported by the fact that the time between each
encounter is about 1 ps and during that time the cluster atoms in Pd13 cover
a few vibrations. Furthermore, the trajectory in Fig. 7.3, shows that the gas
atom is constantly moving around the cluster surface, hitting new cluster
atoms. Third, the escape probability is assumed to be determined by one
degree of freedom. If the temperature of the motion in that degree of freedom
is T , the probability of escape is

Pesc =

R1
V0
E�1=2 exp (�E=kBT ) dER1

0 E�1=2 exp (�E=kBT ) dE (8.7)

Fourth, the parameters n and m are assumed to be temperature-independent.

A major problem in PEMET is to calculate the energy of the gas atom
after escape. In the �rst encounter, the colliding degrees of freedom are
heated by the binding energy corresponding to the potential well V0. There-
fore, even at Tg = Tc, energy will be transferred from the active degrees of
freedom to the cluster. This leakage must be regained by the gas atom at
escape. Physically this is assured since the gas atoms that manage to escape
have a higher energy than average. (Compare with the cooling e�ect by wa-
ter evaporating from the skin.) However, we have not been able to create
a physically realistic, quantitative model that leads to zero energy transfer
when Tg = Tc. Instead, a completely empirical compensation term has been
added to the escape energy in order to assure equilibrium

There are two features we want to be reproduced by PEMET. First, the
energy transfer versus gas temperature curves in Fig. 8.1. Second, from the
simulations we have drawn histograms of number of encounters per collision.
Such histograms should be satisfyingly reproduced by PEMET.

The PEMET energy transfer has been �tted to simulation data in the
least square sense at Tc = 100 K and 700 K, respectively. As in the PECT
calculations we set m = 1. The optimal parameters are found in Table 1 in
Paper VII. QTc in this table is the average deviation between PEMET and
simulations. Note that the reason why QTc is relatively small for helium is
that so is the average energy transfer for helium. The average energy transfer
from simulation as well as from the PEMET �ts are drawn for collisions with
argon in Fig. 8.6. We observe that the PEMET predicts accurately the
increased energy transfer for low gas temperature. Furthermore the PEMET
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Figure 8.6: The graph shows the average energy transfer in Pd13-Ar collisions
as a function of gas temperature. The cluster temperature is 100 K (upper
curves) and 700 K (lower curves) respectively. The dashed curves with rings
are from simulations and the solid curves with stars are from PEMET �ts.

parameters imply that multiple-encounter collisions are more frequent for
krypton than for helium.

The distributions of number of encounters per collision in Fig. 8.7 show
that the PEMET only qualitatitvely describes the collisions. The bars are
from simulations and the curves are from PEMET. More multiple encoun-
ters occur at the low gas temperatures (black bars and dashed curves) than
at the high gas temperatures. This is indeed reproduced by PEMET. How-
ever, PEMET predicts in all cases a higher frequency of multiple encounters
than simulations. We can conclude that PEMET qualitatively describes the
collisions. However, multiple encounters are overestimated due to the under-
estimation of the escape probability in Eq. 8.7. At high temperatures, the
escape probability should be almost unity.
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Figure 8.7: Histograms over the number of encounters per collision in colli-
sions of Pd13 and Ar are shown. (Upper panel) Tc = 700 K. The bars show
simulation data and the curves PEMET calculations. The black bars and
the solid curve corresponds to Tg = 100 K and the grey bars and the dashed
curve corresponds to Tg = 500 K. (Lower panel). The same as above but
Tc = 100 K.
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Chapter 9

Cooling of clusters in a rare gas

atmosphere

Hot clusters may cool by evaporation of atoms, ejection of electrons, photon
radiation and by collisions with a surrounding gas [165]. Only the latter
aspect will be treated here. The simulation scheme in Paper VI was orig-
inally developed to be able to use one set of simulations for di�erent gas
temperatures. The cluster temperature must be �xed as the spatial con�gu-
rations of the cluster correspond to a certain Tc: In the cooling of a cluster
from an initially high temperature Tc (0) to the lower gas atmosphere tem-
perature Tg, we observed that the translational temperature of the cluster,
Ttrans, decays much quicker than the internal temperature, Tint. Hence, a
proper study of the cooling requires data of the energy transfer at di�erent
Ttrans and Tint. Fortunately, the internal cluster temperature only enters the
simulation scheme in the internal con�guration of the cluster and one set of
simulations can be used to calculate the energy transfer for varying Tg and
Ttrans. Only Tint is �xed.

The rate of change in temperature is proportional to the collision fre-
quency, z (Ttrans; Tg), the energy transfer, h�Etransi

Tg;Ttrans;Tint
and

h�Einti
Tg;Ttrans;Tint

, respectively, and inversely proportional to the cluster heat

capacity of the translational degrees of freedom, ctrans (Ttrans), and internal
degrees of freedom, cint (Tint), respectively. The cooling of the cluster temper-
atures Ttrans and Tint is modeled by a system of coupled di�erential equations.8<

: dTtrans=dt = h�Etransi
Tg;Ttrans;Tint

� z (Ttrans; Tg) /ctrans (Ttrans)
dTint=dt = h�Einti

Tg;Ttrans;Tint
� z (Ttrans; Tg) /cint (Tint) (9.1)

The collision frequency is an analytical function of temperatures, gas masses
and the gas pressure. The energy transfer is taken from the collision simu-
lations and the heat capacity is taken from the MC simulations in Paper

I. The collision frequency depends on the collision cross section but so does
the average energy transfer and the dependencies cancel in Eq. 9.1. The
only function of the pressure is to determine the time scale of the cooling.
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In Fig. 9.1 the cooling of the cluster from 1300 K in an atmosphere of
neon at 100 K and 300 K, respectively, is shown. The curves are similar in
shape for the other rare gases in the study. As assumed, the cooling rate of
the cluster translation is much higher than that for the internal degrees of
freedom. Thus, only a negligible error is introduced if we assume that the
translation of the cluster is immediately thermalized to the gas temperature.
Consequently, only the energy transfer to the internal degrees of freedom are
of importance. However, the translational degrees of freedom does take an
active part in the energy transfer in the sense that cold translational degrees
of freedom contribute to the cooling of the internal degrees of freedom of the
cluster.

In Papers III-V, the cooling was not just calculated using energy trans-
fer data, heat capacity data and the cooling equation but simulations of
the cooling were performed as well. In such simulations one hot cluster was
allowed to collide with gas atoms in many consecutive collisions and the tem-
perture was followed as a function of the number of collisions. The cooling
rate in such simulations agreed well with the cooling predicted by the cooling
equation.

A realistic pressure in the cluster source in a cluster experiment might
be 100 mbar. With this pressure we found that the cooling time required
is less than half a microsecond. With this a as guide it should be possible
to design an experimental setup so that the cluster is fully thermalized by
a gas. Among the rare gases, we �nd that argon and krypton are the best
cooling agents.



71

0 50 100 150 200

100

300

500

700

900

1100

1300

Time    [ns]

C
lu

st
er

 te
m

pe
ra

tu
re

   
 [K

]

Pd13-Ne

Figure 9.1: The temperature decay of a Pd13 cluster in a neon atmosphere
of 100 mbar is shown. The initial cluster temperature is 1300 K. The solid
curves show the internal temperature and the dashed/dotted ones show the
translational temperature
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Chapter 10

Discussion and outlook

Computer simulations are fascinating in that microscopic processes can be
followed on a very detailed level. For the development of theories describing
the melting in �nite systems, mostly simulations of Lennard-Jones clusters
have been used in the past. Many-body potentials have also been used with
the aim to model metal clusters. When evaluating the merit of simulations
there are two di�erent types of accuracy to assess: i) the accuracy of the
simulation results with respect to the chosen model and ii) the accuracy of
the model with respect to the reality it tries to describe. Our results should
at least be accurate in the former sense but perhaps not as accurate in the
latter sense.

A new criterion of a non-fragmented cluster has been introduced for sim-
ulation of canonical systems. No restrictions were put on the shape of the
cluster and indeed we found that small molten clusters are not spherical.
In both the constant-temperature and constant-energy simulations the ma-
jor problem with nonergodicity due to phase barriers was observed and the
calculated melting points for the clusters Pd54, Pd55, Pd147 and Pd309 are
therefore not reliable.

As a contribution to the solution we have presented Reference System
Equilibration (RSE) simulations with the aim to calculate the absolute DOS
for the clusters. In the case of Pd13 the RSE method manage to reproduce the
canonical caloric curve excellently over the whole temperature interval from
100 to 1600 K. One great advantage with the RSE method is that comparison
with a known DOS for a calibration state of the cluster is required only if the
absolute DOS is desired. Furthermore, with the choice of reference system to
be independent harmonic oscillators, it is considerably less time-consuming to
do one MC step with the reference system than with the cluster. Therefore a
RSE simulation is not muchmore time-consuming than an ordinary canonical
simulation.

The results from the RSE simulations of separated solid and molten iso-
mers of Pd55 and Pd147 were encouraging but the number of statistically
equivalent isomers must be known in order to reach the goal to calculate the
melting point. However, in Paper II we initiate another strategy for the
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calculation of the melting point. The molten phase of the cluster is con�ned
to a sphere so that when the energy of the combined system increases the
cluster approaches the hard-sphere 
uid system for which the absolute DOS
should be possible to determine on an absolute scale. We are looking forward
to the completion of such a calculation.

Simulations of cluster-gas atom collisions have been used to calculate
the energy transfer and with the aid from the heat capacity calculations a
subsequent calculation of the cooling of the cluster in a rare gas atmosphere
was performed. With the improved simulation scheme in Paper VI, the
simulated collisions did satisfy the applicable equilibrium constraint. Many
interesting phenomena could then be observed at equilibrium. With this
simulation scheme, a considerably amount of information of high accuracy
could be extracted from a single set of simulations. The cooling curves showed
that indeed the translation is cooled much faster than the internal degrees
of freedom.

One goal with using simulation is to investigate atomic systems in a way
that is not possible in experiments. A fundamental understanding of mecha-
nisms may be the major issue and quantitative agreement with experiments
is then not of highest priority. However, in the industry today there is a need
for simulations that should replace experiments in order to reduce costs. Are
the simulations presented in this thesis of such accuracy that they could
favourably be compared with experimental data? In the case of the melting
point certainly not. There are two major things that reduce the accuracy:
nonergodicity due to a phase barrier and inaccurate potential energy sur-
face calculations. Methods to e�ciently overcome barriers are of great need.
There are promising methods available as the j-walking and q-jumping MC
methods. Even more informative are however the methods that determine
the density of states of systems. The calculation of the anharmonicity of
vibrations in e.g. clusters is an exciting future research �eld. The anhar-
monicity is not only of interest for clusters but also for bulk materials as well
as most molecular systems.

The potential energy surface of clusters has recently been calculated in
ab initio studies of melting [166]. Eventually, with fast computers and op-
timized algorithms, such fundamental energy calculations will be the most
accurate ones. It might however be questioned if enough con�gurations can
be explored with these time-consuming calculations in order to achieve ac-
curate statistics. For now the parametrized functionals probably give best
results. An accurate potential for sodium clusters would be desireable in
order to compare simulations with the experimantally known melting points.

A natural continuation of cluster-gas collisions would be to simulate col-
lisions with reactive gases like CO and O2. Such collisions with possible
sticking and even chemisorption would certainly be of great interest.
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