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About MontelLab

MontelL ab is a program that employs the Metropolis Monte Carlo simulation method for
calculating thermodynamical properties in bulk or particle systems (clusters). It was
originaly developed as an educational program under the VisAb project ("A
Visualization of Abstract Conceptsin Physical Chemistry by Computer” [1]) which was
financed by Hogskoleverket (the Swedish National Agency for Higher Education) but it
has now also found its way into scientific research. MonteL ab is now introduced as free
software  and might be downloaded from the MonteLab webpage
www.phc.gu.se/~janw/MonteLab.htm. The program is written in standard Fortran and
should be compilable for Fortran 77 and later version. Bugs reports and improvement
suggestions are very welcome to Sture.Nordholm@phc.gu.se.

We believe that MonteLab can serve as a Monte Carlo tool for many people. A
necessity when distributing software to new users is a good and extensive
documentation. Hopefully, with this User's Guide and with a well-commented code,
MonteL ab will be easy to use and understand.

The number of possible areas of use for a Monte Carlo program is of course enormous,
and a program that is not easy to modify has no future outside the group of original
users. Therefore, much effort has been put into writing a clear and organized code with
many comments. The program is organized as a main program that should suit many
different systems and modules that may be modified for different systems. A
Programmer's Guide is available as a help when modifying the program. The
Programmer's Guide is downloadable from the MontelL ab webpage. Every reasonable
effort has been made to eliminate errors in the program, but the authors cannot assume
responsibility for the consequences of their use.
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About the User's Guide

In this User's Guide the function of MonteLab as well as the underlying statistical
thermodynamics are described. To each system, the theory is first given followed by
special features of MonteLab and then instructions are given how to give input and how
to interpret output data. Finally, we present some hints for the simulations and obstacles
that accompany the chosen system. For anyone who wishes to understand the
fundamentals of the Metropolis Monte Carlo simulation method [2], an excellent
description is given by Smit and Frankel [3].

This version of the User's Guide covers the following systems:

1. Simplefluids with Lennard-Jones 12-6 (LJ) or Morse pairwise interaction.
The canonica ensemble (NVT).

2. Simple fluidswith cell constraints with LJ or Morse potential.
The canonica ensemble (NVT).

3. Clusters of atomsinteracting with the MBA (Many-Body Alloy) potential.
The canonica ensemble (NVT).

4. Clusters of atoms interacting with the MBA (Many-Body Alloy) potential.
The microcanonical ensemble (NVE).

Each new chapter is based on the previous ones.

Newsin MonteLab versions 4, 5 and 6

The version 4 of MonteLab was a totally rewritten program compared to version 3.2.
The program was reorganized in a main program and exchangeable modules as
mentioned above. The origina function was not changed but complemented. One error
has been found in version 4, namely that the new atom to be moved was not chosen
randomly but in an ordered sequence (See Sec. 1.8). With this error modified to the
proper random choice, we introduced version 5. In a few tests we observed no
difference in results between version 4 and 5.

In version 6, the random numbers are generated in anew order and registered in afile so
that an interrupted simulation may be continued. It is also possible to zoom in a
simulation. The g(r) isin version 6 replaced by the s(r) function for particle systems
(clusters).

The policy of version number is that the same input data (as e.g. the initia random
number) should always generate exactly the same output (as long as the same computer
is used) when the same version of the program has been used.

Jan Westergren
April 2005



Montel ab FLUPAIR Chapter 1

SIMPLE FLUIDS WITH LENNARD-JONES 12-6 (L J)
OR MORSE PAIR-POTENTIALSIN
THE CANONICAL ENSEMBLE (NVT)

THEORY

1.1. Periodic boundary constraints

The huge number of particlesin for instance aliquid can naturally not be simulated by a
computer and the common way to simulate a bulk-like system is to use periodic
boundary constraints (PBC). An active cube is cut out of the bulk system and the
particles in that cube are rcalled active particles (Fig. 1.1). That cube is then repeated
infinitely many timesin all dimensions (Fig. 1.2). In the copies of the cube, the particles
are at exactly the same positions as in the active cube. If a particle moves out of the
active cube, another image of that particle enters the active cube and becomes the active
image of that particle.

Is the system with PBC a realistic representation of a fluid? Well, at least the surface
particles are eliminated which is the magjor problem. In a rea fluid, the overwhelming
number of particles is far from the surface and that is also true for the PBC system.
However, by using PBC, the particles are forced to a certain periodicity. If the length of
the active cube is L, the system must repeat itself after the distance L. If there is no
structure in the real system, for instance in an ideal gas, this forced periodicity probably
has a minor effects on the thermodynamic properties. But at temperatures and pressures
where the fluid should segregate into dropletsin gas or bubblesin liquid, the PBC might
hinder readlistic configurations. Say that in a realistic fluid, droplets of diameter 2L are
surrounded by gas. Such configurations are of course impossible to create in the PBC
system. Hence, the PBC should be used with the awareness that they are more a way to
avoid surface effects than representing a true bulk.



Fig. 1.1 The active cube is cut out from aliquid and a gas.

Fig. 1.2. The distance between particles A and B is the distance between the

nearest images of the particles. When particle C moves out of the active cube,
the image C' becomes the active image.



1.2. Energy calculations

In a system that is considered to be canonical, the number of particles in the active cube,
N, the temperature, T, and the volume of the cube, V, are fixed. At a certain moment the
gpatia coordinates and the momenta of particle i are ri and p;, respectively. If there are
N active particles we say that the system has the configuration

R=[r, .. ry]
and the momenta vector
P=[I01,I02|---,ION]

The total energy of the system at T and V is just the time average of the total energy
when the particles move around in the liquid. However, according to the ergodic
hypothesis, instead of taking the time average, we can as well calculate the average of
the total energy over all possible configurations and momenta. The average should be
weighted with the Boltzmann factor. Hence,

[[ H(RP)E""TdRdP

al[R,P|

(Ega )y = | €rgodic hypothesis] = AT qR P

al [R,P]

(Here and in the text below double integral symbol will be used although the integral is
multi-dimensional. In this case the integral is 6N-dimensional. For the PBC fluid, the
integrations should be over all momenta and over all configurations in the active cube,
i.e. 0SX,¥,2,%,.. <L, where L is the side length of the active cube.) H is the
Hamiltonian and € (R T is the Boltzmann factor. In the canonical ensemble, the
probability for the system to bein [R, P] is proportional to the Boltzmann factor.

In the canonical ensemble we can separate R and P as the kinetic energy only depends
on P and the potential energy only depends on R. Theintegral might then be simplified
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where U isthe potential energy.



The average kinetic energy is simply
3N
< Ekin> = 7 ka’

thus the difficult task is to calculate <U > . First of all we must know how to calculate the
potential energy for a single configuration, U (R) . In the simplest case we use a pair
potential to describe the interaction between the particles. With such a potential the total
potential energy is

where rj; is the distance between the particle i and the nearest image of particle j. That
image might be an image in a neighbour cube and not in the active cube (see Fig. 1.2).
The most common of all potentialsis the Lennard-Jones (12-6) potential that is given by

| {)

This potential is drawn as the solid line in Fig. 1.3. The well depth is set by the
parameter &, and the equilibrium distance ry, i.e. the bond length in avery cold dimer, is
setby o(r, = \/Ea). In Appendix 1.1, potential parameters are found for some common
atoms and molecules. Another commonly used pair potential isthe Morse potential:

H(ri.) — D(e—Za(r—re) _2e—a(r —re)).
Three parameters are to be specified for this potential. Besides the well depth, D, and
the equilibrium distance, re, the curvature at equilibrium distance is given by « =2Da”.
The LJ and Morse potentials have the same well depth, equilibrium distance and
curvature a the equilibium distance when D=gr1,=2"°0 and
a=2"°6/0QJe/D . This Morse curve is drawn as the dashed line in Fig. 1.3. Since
the interaction between particles fall off rapidly with r it is common to truncate the
potential at a certain so-called cut-off distance in order to save computing time. In
MonteL ab, the potential is set to zero for distances longer than r, . , which is a user-
defined parameter.

The LJ potentia is especially handy for simulations as the units of the parameters
(energy and length units) can be chosen independently of each other. Thus, regardless of
the kind of particles in the fluid we can choose the units so that £ =1 energy unit and
o =1 length unit. Consequently, all fluids can be described by the parameters £ =1 and
o =1, only the units differ. The advantage is that a ssimulation is valid for al fluids,
except that both input and output data will convert to different values in Sl units. For
instance, the input temperature kT =1 energy unit corresponds to different S
temperatures depending on if the fluid is neon or argon. These varying units are called



reduced units and the recipe to convert reduced units into Sl units is given in Appendix
1.2.

The situation is different for the Morse potential. We can still let the energy and length
units vary so that for all fluids, D, =1 reduced energy unit and r, = 2"° reduced length
units. The third parameter a has however the dimension length™ and since the length
unit is already set to define r,, the parameter a must be given a numerical value before
asimulation starts. A simulation can thus only represent fluids with the predefined ratio
alr,.
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Fig. 1.3 The Lennard-Jones and the Morse potentials. a is chosen so that the
curvature of the two curvesis equal at r,. Distances and energies are givenin

reduced units.

When the potential is given, U (R) can be calculated for any configuration R.
According to Eg. 1.1, only an accurate numerical integration method is needed in order
to calculate the average potential energy. Unfortunately, the integral should be over all
gpatial coordinates. Say that we have 512 active particles, then the integral is 1536-
dimensional. A numerical evaluation of such an integral is not doable. Instead, let us
randomly generate configurations and calculate the average over them. Let us imagine
that we have an agorithm that would generate a set of random configurations {Rk} \Iivzl
according to the Boltzmann distribution,

Probability (R, ) 0 &V ®)/%" dR.

Then the average potentia energy would be just the average over that set of
configurations,



:iiu (R,) asW (12)

The method to generate {Rk}\livzl is the Metropolis Monte Carlo method that will be
described in Sec. 1.8. This method to calculate the integral has proved to be superior to
anormal numerical integration for thermodynamical systems.

1.3. Heat capacity calculations

The heat capacity at constant volume is easily obtained in the canonical ensemble, as it
isthe fluctuation in energy,

C, =(E*)~(E)’ :37Nk3 +HUu?) ~(U)”.

The first term in the last expression is the heat capacity of the momenta. The total heat
capacity is obtained in a Monte Carlo simulation by

CV:3—Nk +i§U2(R ) - iﬁu(R ) 2 asW -
2 P wig VY lwig e

1.4. Thepressure

In the canonical ensemble it is the temperature, volume and number of particles that are
fixed. The pressure, in contrast, fluctuates. The average pressure is however a quantity
of great importance and by simulations we will try to caculate it for different
temperatures and particle densities. The pressure of a canonical ensemble is generally
expressed as

P= —(a_Fj
v TV
where Helmholtz free energy is derived from the partition function:
F=—kTINQ =T (INQ,, +InQ,,).

The partition function for the kinetic energy is

1(v Y A NKk. T
Qun ( J: = Pin = Poew =——2
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(N is caled the thermal de Broglie wavelength.) In an ideal gas, where the potentia
energy is constant, InQ,, =0 and the pressure solely originates from the kinetic
energy. In the genera case however, the partition function for the potential energy of a
PBC fluid is

Qut =7 ﬂ (RIWTYR = v dej dyl..._L[dzNe'U(Xl’yl""'ZN)/k"T.
V 0 0 0

alR

The side length of the active cube is L and the volume is V = L. In order to calculate
the contribution to the pressure from the potential energy we rescale the coordinates to
S=R/L=R/V"®;
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0 0 0

This formula is unfortunately exactly correct only when L and N are infinite. When
periodic boundary constraints are introduced, the derivatives should be with respect to
x —L instead of x when nearest neighbours are not in the active cube. Fortunately, the
errors cancel totally if we regard the potential as being a function of distances between
particlesinstead of the coordinates. We set

0=y (x %) +y )z -a)
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Recall that the distance is between the nearest images of particlesi and j. Now, let us
substitute the variablesin Eq. 1.3:

&—“&Z

e axl 6r i=2 0% j=

- ia :i‘@-” et (L4)

I ar1 J

If we now rearrange all the derivativesin Eq. 1.4 we can conclude that

ZN:)g E—Ia—+y H—+z E—Ia——

= ox ayl 0z

5 xl()g X)) x (% -x) yi(yi _yj)+yj(yj _yi)_l_zi(zi _Zi)_l_zj(zi -2) £ -
ij>i I’ij I’ij rij rij rij arij
|J>, L ar

We might now allow also i > j, only remembering to divide the sum by two. Eq. 1.3 is
equivalent to

Idxlj'dy1 Idz g v/ [4132 ro——

)
| j#i ar

jdxlj dyl...j dz, e/’
0 0 0

15
Ppot = _g

Defining the virial energy

= (R)=3 230 5

|J¢|

we conclude
| e R)E e
E’” R , (1.5)
V R)/kpT drR
JLG

and, using the set of configurations { RK} \:/:1 , the pressure of the system is

Nk,T 1 &
" Vgl_z (R,) a&sW -

k=1

P=
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1.5. Theradial distribution function

The radia distribution function gives information about the structure of the particles. In
a perfect crystal, the particles are ordered in a three-dimensional pattern. Looking at the
neighbours with the eyes of one of the particles, the neighbours will be at specific
distances, r. The radial distribution function, g (r) , tells how many neighbours there are
per volume in the spherical shell at the distance r from a specific particle.

In a totally homogeneous fluid, g(r) will be the same for all particles but in, for
instance, a droplet/gas mixture the surrounding of a particle depends on whether itisin
the droplet or in the gas. In such a case g(r) isthe average for all particlesin the fluid.
The radia distribution function is in other words the average local density around a
particle. As a last step the distribution is normalized with the global particle density
p=N/V. Weend up at the definition

_ average number of atomsin the shell [r,r +dr] /47w ?dr
. :

g(r)
In aliquid, the particles do not form a perfect pattern but there is still a structure on a
local scale. Each particle tends to be surrounded by a few layers of particles. Further
out, however, the particles are found totally at random (in the eyes of the particle we
have picked) and g(r) approaches unity. The definition of g(r) is illustrated on a
liquidin Fig. 1.4.

0 v

U

O
O
J } } } r O O

Fig. 1.4. The definition of the radial distribution function. In a liquid, wells
and peaks follow each other until g(r) finally approaches unity. The
illustration isinspired by Roland Kjellander, Géteborg University.

In a gas, the wells and peaks weaken and g(r) is close to unity aready for small r. In
Figs. 1.5a-c, typical radial distribution functions are drawn for a solid, liquid and a gas,
respectively. From the shape of a curve it is possible to tell the phase of a fluid and
hence g(r) isavery useful function.
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solid

liquid

gas

r

Fig. 1.5. The radial distribution function from simulations of a solid, liquid
and a gas. Note that ther scales are different in the three figures.

The g (r) is obtainable from a Monte Carlo ssmulation. Let us divide the r axisinto M
equal partsfrom r =0 to r =L /2. Since the largest sphere that might be placed within
the active cube has the radius L/2, which is the largest r for which a correct value of
g(r) can be obtained. The average number of neighboursin an interval is

p_[ )@ e _<number of r, intheinterval [r, _1,r,]>.

N

where the average is over the set of configurations {RK} \:':1 that were generated in the
simulation.

In the case of pair potentials, g(r) contains enough information to calculate the average
potential energy and the pressure. With the pair potential e(r) and the "viria pair
function” ¢(r)=-r6'(r)/3, we find the following equations that are equivalent to
Egs. 1.2 and 1.5, respectively:

]2 rédr
0

I\JlZ

P %T 7 *dr.
0
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The radia distribution function is only sampled up to L/2. The common procedure is
to approximate g(r)=1 when r >L/2. The integrals beyond L/2 are for the LJ and
Morse potentials analytical and the results are presented in Sec. 1.12, "Tail correction
for the potential cut-off".

1.6. Pressure derivatives

(The derivation in this section is only valid for pair-potentials.)

The critical point of afluid is defined as the point where

P 9P _
=2 -
FYARYE

Montel ab cal culates these two derivatives as one method to find the critical point. We
have however seen that the relative accuracy is often not good enough.

Let us first define two functions with the dimension energy in terms of the "virial pair
function”

v)="2
é(n)="21)

The pressure s, as seen above,

_NigT | kgT (GQWJ N
TV

\% Qpot L OV

2
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pot

TV

3
astot azon’( Danot (ano’(j
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aVZ V3 ont Q2 Q3

pot pot

TV

The derivatives may now be expressed in the functions ¢ (r), ¢ (r) and &(r)
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Here the averages should be interpreted according to

iZ]

Unfortunately, there is no simple expression for the tail correction of averages
{22}, {sH{u}) or {#}{#}{#}). Thereforealarge r,, must be used when the
derivatives are of interest. The importance of a large r,, IS emphasized by the fact
that the ¢,¢ and & all reach further out than 6.

1.7. The number of active particles

The larger the number of active particles, the more redlistic is of course the system. On
the other hand, it takes shorter time to get a representative set of configurations if the
number of particlesis small. Thus, with a given computer capacity, few active particles
might give a more accurate result under conditions that should lead to a homogeneous
fluid.

Some suggestions might be given to the choice of number of active particles. A larger
cube should be used if inhomogeneity is suspected be present. The range for which the
g(r) can be caculated is limited to L/2. Furthermore, if the cut-off distance
o > L/2, the potential energy will start to directly sense the forced periodicity of

C

the system. See also Sec. 1.13 "The Qg test".

15



THE METROPOLISMONTE CARLO ALGORITHM

1.8. The standard M onte Carlo simulation

In a Monte Carlo simulation, we want the particles to move around in the active cube in
such away that the configurations are generated according to the

Probability (R) 0 e /%" dR.

The particles are let to move randomly instead of according to Newton's equation of
motion. They are however moved according to a specia scheme that will lead to a
correct probability distribution. There are many different schemes that will work, but
the method employed in MonteLab is the commonly used agorithm which was
developed by Metropolis et. al. in 1953 [3].

Let us start with a configuration R, with a structure that is representative for the fluid
in equilibrium at the given volume and particle density. A new configuration is then
generated by a small random displacement of one particle. The particle to move is
picked randomly. The new configuration we call a trial configuration R,. Now the
Boltzmann factor is compared for thetrial configuration and the original one:

_ Probability (R,)

y= U (R)-U(RA) T
Probability (R, )

el

If the potential energy for the trial configuration is lower than for the original one, i.e.
y>1, the new configuration is accepted as the next configuration in the set, R,,,.
Otherwise the trial configuration should be accepted with the probability y. This is
done by comparing y with a uniform random number between O and 1, U O,]] . Thus,
if y>U[0] the trial configuration should be accepted. If y<U[01], the tria
configuration is rejected and the new configuration should be the same as the original
one. Note that for a pair potential the energy difference U (R,)-U (R, ) isequal to the
difference in removal energy of thetria particle after and before the trial move.

Now we know how to accept/rgect a tria configuration. But how should the
displacement of a particle be done? There is no unique recipe for that but there is one
restriction: the move of a particle should satisfy so called detailed balance. That is that
the probability for generating (not accepting) the trial configuration should equal the
probability for generating the reverse move. The common way, which is used in
MontelLab, is that the x coordinate of the particle to move is changed by a uniform
random number U [—A, A] . The y and z coordinates are changed analogously, but with
new random numbers. Such a move satisfies detailed balance.

16



THE MONTELAB MONTE CARLO ALGORITHM

1. Start with a configuration R, and pick randomly one of the particles

in the active cube.
2. Generate a tria configuration by changing the coordinates of the

chosen particle: x, =x, +U,[-A A
Yi = +U2[_A' A]
7, =7, +U[-0, )
3. Caculate y= Probab_il.ity(Rt) =g VRNV
Probability (R, )
4. 1f y>U,[0,], then accept the trial configuration as the new R,,,,
elselet Ry, = R,.
5. Increase k by one a go back to 1.

This scheme will in principle give the correct distribution of configurations. But is it
ergodic, i.e. isit possible to go from any configuration to any other configuration within
a finite number of steps? There are at least situations when it might require so many
steps to go from one configuration to another that it is not possible to run such a
simulation on today's computers. One example is the transition from a solid structure to
amolten one. The probability to find the way from one phase to another is small which
can be thought of as a barrier between the phases that hinders the transition. Another
example is the segregation of a homogeneous fluid into bubbles in a liquid. In such
cases, the user of asimulation program must find out himself whether a true equilibrium
has been established. Thisis currently amajor research field.

Not until MonteL ab version 5 was the particle to be moved chosen randomly. In earlier
versions the particles were instead picked according to a list so that a specific particle
was to be moved regularly every N" trial. Although such a procedure might give a
correct simulation, it is guaranteed to be correct with the random procedure. A few tests
were done and no differences were found between the results from Montelab version 4
and version 5.

The Monte Carlo simulation should give the same result independently of the value of A
as the number of generated configurations W - . In a rea simulation, however, we
would like to set a value that minimizes the statistical error. In order to reduce the
statistical error, we would like the particles to probe the phase space as much as
possible. Let us define the steplength = J3A which is the maximal move a particle can
make in one step. At least for liquids, the particles will only be in narrow valleysin the
phase space. For configurations outside the valleys, some particles will come too close
to each other with a subsequent (very) low probability. Thus, in general, the rate of
rejection of trial configurations will increase with the steplength since long steps will
take the particles out of the valley. With asmall steplength most trial configurations will
be accepted but each step is short. With a large steplength most trial configurations will
be rgjected but a single move may take a particle far away. There is no golden rule how
to maximize the probe of the phase space, but arule of thumb that about 50% of the trial
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configurations should be rejected has often been used. However, a good rejection rate
might vary with kind of system, temperature and particle density. An algorithm is
included in MonteL ab in which the steplength is adjusted to a desired regjection rate.

FEATURES OF MONTELAB

1.9. Initial configuration and meltdown

The initia configuration of the fluid could either come from an input file or be
generated by MonteLab. The initial configuration generated by MonteLab is a simple
cubic lattice. The particles will be spread to form an infinite crystal with periodic
boundary constraints. If the number of active particles is not an even cubic number, an
empty hole will arisein the active cube.

If the initial configuration is given from afile, any configuration is accepted, only with
the restriction that 0<x,y,z<L =3N/p for al particles. The minima energy
configuration is fcc (face centered cubic) for both the Lennard-Jones and Morse
potentials. In order to make a perfect such lattice, the number of particles must
correspond to an even cubic number of fcc unit cells. Since the number of particles per
fcc unit cell is four, the number of particles must satisfy N /4 =integer®.

When the initial configuration is the simple cubic configuration it is clearly not an
equilibrium configuration. However, when the simulation proceeds, the fluid will
approach equilibrium (although it might take a very long time when there is a high
barrier to the equilibrium structure as discussed in Sec 1.8). It would therefore be wise
to delay accepting sampling configurations for the energy average etc until the system
has approached equilibrium. That is possible in MonteLab by using a so-caled
Meltdown period. During this period, the random motion of the particles proceeds
without sampling of averages. Use of a meltdown period is also possible when the
initial configuration is read from an input file. The part of the smulations when
sampling isdoneis called the real simulation.

1.10. Steplength adjustment

The steplength, i.e. the maximal distance a particle can be displaced in one move, might
be selected to be fixed or be subject to adjustment. The adjustment algorithm will adjust
the steplength to give a preset rgjection ratio in the equilibrium fluid. The adjustment
takes place during the entire meltdown period but after the meltdown the steplength will
be fixed to the estimated optimal one. The algorithm has given the desired ratio within a
few percentage units in al the ssimulations that we have executed. The algorithm is
designed so that the steplength gradually approaches the desired one simultaneously as
the structure approaches equilibrium.
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THE MONTELAB STEPLENGTH ADJUSTMENT ALGORITHM

The simulation length, i.e. the number of generated configurations, during the
meltdown is W, . This number must be divisible by ten. The length of each
of the ten adjustment periods is W,; =W, /10. The desired rejection ratio is
0y, 5% <0, <95%.

1

Theinitia steplength, S, isgiven by the user. A good initia steplength
might be 10% to 50% of the lattice constant in the (corresponding)
simple cubic lattice. Theinitial steplength must be less than 90 % of the
side length of the active cube, L.

The rejection ratio of the first adjustment period, g, =number of
rejected configurations/W,, , is calculated. Calculate the steplength in

adj

the second adjustment period by
S, = min{min{q—d; 2} (5 90% EI]_}
G

If S, happentoequal S,weset S, =0.995.

The rejection ratio of the second adjustment period, g, =number of
rejected configurations during the second adjustment period/W,;, is
calculated.

a If g and g, are on different sides of q,, S, is calculated by linear
interpolation,

— V% ~G
$,=8+(S, S.L)qz_ql

b. If g and g, are on the same side of q,, S, is extrapolated.
However, in order to avoid too big changes in steplength, the change is
maximized to 2|S, - S|.

gzmin{3_+min{(% sl) 2|sZ slq 90%[|1} if g, <q,

—Q

S=S- mm{—(sz a)qd LS s@ if g >q

In the last case thereis arisk that S, will be less than zero. In that case
we set
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—c W%
S =55
0,
If S, happentoequal S,,weset S;=0.99S,.

4. Theseplengths S,,...,S, are calculated analogoudly.

5.  In the beginning of the meltdown period, the rejection rates were not
related to the equilibrium structure. Therefore only the six last pairs
(S.q) are used for a final estimation of the optimal steplength. The
estimated optimal steplength is aweighted average

(-30]0, —a) S

opt

p(-30]a, -q)

10
2. exp
S = i:510
Zex
i=5

1.11. Random number generator

A random number generator should not just generate unpredictable random numbers
according to a certain distribution. As a computer can handle only finite integers, the
sequence of random numbers will eventually repeat itself. A good random number
generator has a long such period and for this random number generator the period is
2% —2. Furthermore, the generated random number should not be correlated to the
preceding ones. This random number generator has a dlight low-order correlation but
should work for most applications. The random number generator could easily be
replaced if one so desires. This random number generator is taken from Numerical
Recipes[4].

1.12. Tail correction for the potential cut-off

Since the potential and viria energies (and thus also the pressure) are calculated only to
luor » AN APproximate correction for the missing tail should be added. The tail is
divided into two parts.

1. Theinterva r

cut-off

<r <L/2 wherethesampled g(r) function can be used.
2. Theinterval L/2<r <o wherewe approximateg(r) =1.
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Thetall corrections are then

B 47N p L/2

<U>incl.tail _<U>®<cl.tail + 2 I 9( )g(
B 47N p L/2

<EV”>incI.taiI _<Evif>exc|.tai| T j ¢(r)g(r)
_ 47N p L/2

<P>incl.ta'l _<P>e><cl.ta'l T j ¢(r)g(r)

Lennard-Jones

K 2048s0™  32e0°

6(r)?dr =

L_/[Z ( ) 9L9 3L3

J- #(r ) = _8192¢0” 64c0°

2 oL’ 31°

Morse

T G(r)rdr = De:z:_L){(aL) ( 4e"“2) +

L/2

2aL(e""e —8e"“2) +

2(e”'e —16e”“2)

o a(re-L)
J' ¢ (r)r2dr :DezeT{(aL) ( 2e"“2)

L/2

S(aL) ( 4e”“2)
6crL(e"re —8e”“2) +
6(e0/re _16eaL/2)

How reasonable the assumption of a constant g(r) beyond L/2 is, might be tested

with the Qg test (See sec. 1.13).

1.13. The Q test

There are two tests in MonteL ab for finding inhomogenities in the system. The first one
is the Qq test ("Quality of g(r) tail"), which is based on all the configurations during
the real simulation. The Qq test tests whether the assumption that g(r)=1 when
r>L/2 is acceptable. If it is, then the average particle density for r <L/2 must be
egual to the global one (minus the central atom which is not a neighbour). This can be

written as
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L2 arr(L/2)°
j pg(r)Emr?dr = number of neighboursin the sphere = pM -1
0

The Qg number is defined by

L/2
J' pg(r) @ ?dr

an(L12)°
3

1

which should be unity if g(r)=1when r >L/2. If Qq deviates greatly from unity we
can suspect that there are inhomogenities in the system of sizes that are at least
comparable to L. Furthermore, the tail compensations are not reliable. The first measure
to take in order to improve the Qy number is to increase the number of active particles.

1.14. The Bubble search method

By looking at the two figuresin Figs. 1.6a-b, it is easy to find inhomogenities with the
naked eye. In a three-dimensiona plot it is however more difficult. One way to find
inhomogenities in a configuration would be to register the maximal empty sphere that
could be placed in the fluid. Unfortunately, alonely gas atom placed in the middle of an
empty space would drastically reduce the estimation of empty region size.

o °
® o o ® o
([
o o
o [ ]
o o
o ® ° o
o
+ . . + .
+ +

Fig. 1.6. Spheres are placed in the active cube. To the right is an
inhomogeneous system.

The method that we have developed for Montel ab, instead searches for large regions
with high density and large regions with low density. The method is as follows:

1. Spread spheres in a cubic lattice in the active cube. There are at least 64 times as
many spheres as there are particles in the active cube. All spheres have the same
radius and theradiusis at least so large that all pointsin the cube are covered.

2. Make a histogram over the number of particles found in each sphere. The abscissais
normalized to
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_ number of particlesin the sphere
Am® /3 '

sphere

n

3. Keep the number of spheres constant but change the radius of the spheres and draw
new histograms.

This method will only test a single configuration, in MonteLab it is the fina
configuration that undergoes the Bubble search, and in contrast to the Qg test, it does not
say anything about all the configurations during the simulation.

As anillustration of the method, let us look at a case that is clearly a two-phase system.
The number of particles is 729 and the input file might be found on MontelLab's
webpage (Input.Inhomogeneous). This ssimulation is compared with a homogeneous
system (Input.Homogeneous on the webpage). The final configurationsarein Figs 1.7a
b and some histograms are found in Fig.1.8.

Homogeneous Inhomogeneous

Fig. 1.7. Snapshots of the configuration of a homogeneous and an
inhomogeneous fluid.
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Fig. 1.8. Histograms over normalized density for different sphere radii. The
left figures are for the homogeneous fluid in Fig 1.7a. and the right ones for
the inhomogeneous fluid in Fig 1.7b.

For the homogeneous system, the distribution is symmetric around unity and the
variance decreases with sphere radius. For the inhomogeneous system with a sphere
radius of 1.9 reduced units, many spheres are almost empty, and the distribution is not
at all symmetric. Not until radii larger than 6 does the distribution become relatively
symmetric. We can thus conclude that the size of inhomogeneities is about 4-6 reduced
units. The Qg numbers for the simulations are 1.005 for the homogeneous fluid and 1.01
for the inhomogeneous one.

1.15. Restarting a simulation

In some cases it might be desirable to restart a simulation from a point somewhere
within the ssmulation. It could be that a time-consuming simulation has been interrupted
and that you want to continue it as if nothing has happened. It could also be that you
want to study a part of a very long simulation in more detail, i.e. datais written to files
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more often for this specific part. It is in MonteLab version 6 possible to restart a
simulation using the same set of random numbers.

The procedure to start at a position in an old simulation so that the new simulation
continuesidentically is as follows.

Copy the coordinates at the desired position (Monte Carlo step) in the Conf file of the
old simulation to a new configuration input file. Find the corresponding Monte Carlo
step in the Data file. Use the random number at that position as the seed random number
in the new simulation. Look in the Data file what steplength that was used at that Monte
Carlo step. Use this steplength in the new simulation. This procedure must be taken care
of manually by the user.

Note that the averages might be alittle different in the old and the new simulations. Say
that configuration number 10000 in the old simulation is the initial one in the new one.
The next local average in the old one might be over configurations 10001 to 10100 but
the first local average in the new simulation is over configurations 1 to 100 which
correspond to 10000 to 10099 in the old simulation.

Note that since that heat capacity is a variance, the total heat capacity of two
simulations is not Ssmply the average of the two heat capacities.
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USER INSTRUCTIONS TO MONTELAB - INPUT

By one Monte Carlo step we mean one trial move of a particle. When comparing
simulation lengths for systems with different number of particles, it is rather the number
of Monte Carlo steps per particle that should be used.

1.16. Online help

Do you want sone help and information ((y / n) ?
A short description to MonteLab may be given. If zero is given to any input, a short help
is given and once again MontelLab asks for input.

1.17. Number of particles
Ent er Number of Particles ( <8001 )

The cubic numbers up to 8000 are 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728,
2197, 2744, 3375, 4096, 4913, 5832, 6859 and 8000.

1.18. Particle density

Enter the Particle Density

The particle density, i.e. particles per volume, should be given in reduced units. The
critical density for the reduced Lennard-Jones fluid is approximately 0.3.

1.19. Temperature

Enter kb*T. (kb=The Bol tzmann const ant)

k,T should be given in reduced energy units. The critical temperature for the reduced
Lennard-Jones is approximately 1.3.

1.20. Kind of potential

Choose potential function for the interaction between

the particles
The options are Lennard-Jones or Morse pair-potentials.
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Enter the Mrse paraneter al pha.
The alpha parameter should be given in Morse reduced inverse length units.

1.21. Cut-off distance

Enter Cut-off Distance for the potenti al

The cut-off distance must be smaller than L/2. The reason is to avoid interaction
between a particle and many images of another particle. The cut-off should be given in
reduced length units. It is recommended to use a cut-off of at least 4.

1.22. Initial configuration

Enter "G for 'generated or 'F for 'file'
Decide whether the initial configuration should be generated as a simple cubic crystal
by MonteLab or fetched from an input file.

Fromwhich file should the configuration be fetched.

A configuration input file should end with N lines of particle coordinates. The first
column should be numbered 1 to N. The second to fourth columns should give the x, y
and z coordinates of the particles, respectively. If anything goes wrong with the reading
of the file, the simulation will be interrupted. Furthermore, all the coordinates must be
within the interval [O, L] . The output configuration file of a simulation is written so that
it might be used in another simulation as an input file.

1.23. Number of samplingintervalsfor theradial distribution function

Into how many g(r) Sanpling Intervals do you want to divide
the r axis?

The g(r) function will be sampled in equally long intervalsin r=0 to r=L/2. The
maximal number of intervalsis 10000.

1.24. Open output files
Enter a Nanme of this Sinulation.
(Maximumthirty letters and digits.)
The name of the simulation will be given as suffix to all the output files.
Enter Date (or just press enter).

(Maximumten letters and digits.)
Optional input of date that will be registered in all the output files.
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Do you want to perform bubble search (Y/N) ?
Enter your choice.

1.25. Use of meltdown

Do you want to use a 'Meltdown'? ( Y/N)

Data sanmpled during the neltdown period wll not be
included in the final averages.

Enter your choice.

1.26. Use of steplength adjustment

Choose between fixed or adjusting Steplength.

Enter '"F for '"fixed , "A for 'adjusting'.

Enter your choice. This question will only be asked if meltdown was chosen in the
previous gquestion.

Enter the rejection ratio you want in percentage.

(Wthin [5%95% .)

The steplength will be adjusted to give a rejection rate close to the one entered here. If
you do not know of anything better, enter 50. The percentage should be given as an
integer.

1.27. Steplength

Enter (fixed/initial) Steplength for the Simulation.

If the steplength is chosen to be adjusted, this steplength is the one that is used during
the first tenth of the meltdown simulation. The steplength must be less than 0.9L.

1.28. Seed random number

Enter a positive integer seed random nunber.

The seed random number to the random number generator should be any positive
integer.

1.29. Setup of the meltdown simulation

How many Monte Carlo Steps do you want to perform between

every Evaluation of the Pressure, etc.?
Enter any number.
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Ent er Nunmber of Monte Carlo Steps during the mneltdown.

The meltdown is divided into ten parts and there must be at least one printing of the
pressure in each part. Therefore the total number of Monte Carlo steps must be a
multiple of ten times the number of steps between every pressure evaluation.

How nmany Monte Carlo Steps do you want to perform between
every Storing of the g(r) function?

Output of the g(r) function can be done at maximally every pressure printing. This
number must therefore be a multiple of the number of steps between every pressure
evaluation. If you do not want any g(r) output, enter a number greater than the total
number of meltdown steps.

How many Monte Carlo Steps do you want to perform between
every Witing of particle coordinates?

Output of the particle coordinates can be done at maximally every pressure printing.
This number must therefore be a multiple of the number of steps between every pressure
evaluation. If you do not want any output of the coordinates, enter a number greater
than the total number of meltdown steps.

1.30. Setup of thereal ssimulation

The same questions about number of steps are asked for the real simulation.

How many Monte Carlo Steps do you want to perform between
every Evaluation of the Pressure, etc.?

Enter Nunber of Mnte Carlo Steps during the real
si mul ati on.

How many Monte Carlo Steps do you want to perform between
every Storing of the g(r) function?

How nmany Monte Carlo Steps do you want to perform between
every Witing of particle coordinates?

USER INSTRUCTIONSTO MONTELAB - OUTPUT

1.31. The Conf file

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date and then number of active particles are stated. Then for the
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desired Monte Carlo steps, the coordinates of the configurations are written. The first
column gives the number of the particle, the second to the fourth give the x, y and z
coordinates. If a meltdown simulation is used, the end of that one is indicated. The file
is ended with the final configuration of the smulation. The configuration file can be
used as a configuration input file to MonteL ab.

1.32. Theg.r file

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date are stated. Then for the desired Monte Carlo steps, the g (r)
function is written. The g(r) function is sampled in equal intervals from r =0 to
r =L/2. Inthisfile the first column is the middle point in each interval I, the second
interval isthe g, numbers, defined by

g, f Ay *dr = I g(r)4m?dr.

interval | interval |

The third column is the number of the interval, I. If a meltdown simulation is used, the
end of that one is indicated. All printings of g(r) are averages from the start of the
simulation (excluding the meltdown). The g(r) function is aways printed after the
simulation is compl eted.

1.33. The Datafile

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date and potential type are stated. By alocal average we mean the
average of a quantity since the last Monte Carlo step for which the quantity was written
to the file. With the total average we mean the average since the start of the simulation.
Note that the total averageis reset after the meltdown.

If (tail) is added to a quantity it includes tail correction. The quantities are for the whole
system and not per particle.
Local averages are then given for

1. The potentia energy, the squared potential energy and the potential energy
including tail correction (tail)

2. Viria energy, squared virial energy

3. Viria energy (tail) and the cubic virial energy

4.  Pressure based on the virial energy and the pressure based on the
virial energy (tail)

5. ThePV1(tall), PV2 (tail) and the virid energyxPV1 energies.
These energies correspond to ({W}), ({¢}) and ({#}{W}), respectively.

The heat capacity divided by the Boltzmann constant is atotal variance from the start of
the ssimulation.
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The last used random number is also given to enable restart of simulation (Sec. 1.15.).
Whenever the steplength is changed that is indicated in the file. If a meltdown
simulation is used, the end of that one isindicated.

This file ends with a list of the input data and the final results. The steplengths and
corresponding ratios of rejection are listed. The steplength that was used in the real
simulation is displayed as the final steplength. The number of rejected trial movesin the
real simulation is given so that a check of the rejection ratio can be calculated. Total
averages and sguared total averages are given so that error estimates can be done. Some
quantities are given for the final configuration. The Qg number of Sec. 1.13. is given.

1.34. Standard output

In the standard output the total averages of the potential energy and the pressure are
given. The name of the simulation and the line "THE SI MJULATI ON WAS
PROPERLY FI NI SHED. " isfound at the end of the line when the smulation is over.

1.35. The Bubblefile

In the header, the MonteLab version number and kind of MonteLab program,
smulation name and date are stated. The Qg number of Sec. 1.13. is given. The
histograms over normalized density are given. In column one the number of particles
found in a sphere is given. In column two, the number of particles is trandated into
normalized density. The third column is the normalized frequency.

In the end of the file the sphere radius that were used for the histograms and the
variance of the histograms are written.

OBSTACLES AND SUGGESTIONS

The main obstacle with the simulation is the phase segregation in the coexistence
region. For such fluids the MonteLab program with cell constraints in chapter 2 might
be used.

We have used 512 particles as standard and a cut-off of 4. For the meltdown we have
used 1 million Monte Carlo steps and for the rea simulation 10 million steps. By
checking if the local average of e.g. the potentia energy has converged during the
meltdown one can check if the meltdown has been long enough.
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PUBLICATION

On therole of density fluctuationsin the equation of state of a simple fluid
J. Westergren, S. Nordholm and R. Pendfold, Mol. Sim., 27, 17 (2001)

APPENDIX 1.1

Table of Lennard-Jones parameters

Particles £ o

Ne-Ne 35.7 K kyp 279 pm
Ar-Ar 124 K ky 341.8 pm
Kr-Kr 190 K ky 361 pm
Xe-Xe 229 K Ky 405.5 pm
Ho- H, 33.3K ky 297 pm
N>- N> 91.5K ky 368.1 pm
O, 0O, 113 K ky 343 pm
CO,- CO, 190 K ky 399.6 pm
CH4- CH4 137 K ky 382.2 pm
Cl - C|2 357K kb 412 pm
Br,- Br, 530 K kg 427 pm

Data from McQuarie: Statistical Mechanics and Atkins: Physical Chemistry.

Table of Morse parameters

| Particles D ro a
Ar-Ar 170K ky 371A 1.63A1
Kr-Kr 236 K ky 397 A 156 A*
Xe-Xe 332K kg 432 A 1.38 A"

Datafrom V. V. Kondratev, Sov.Phys. Solid State, Vol 16 (1974).
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APPENDIX 1.2

Conversion between L ennard-Jonesreduced unitsand Sl units

Let us take argon as an illustrating example. According to Appendix 1.1, the parameters
for argon are £ =1241.38110* J and ¢ =3.42107"° m.

1 energy unit =1241.381110% J=1.71107 J

1 length unit =3.42[10™° m

1 density unit = (1 length unit) ™ =(3.42[10°° m) ~ =2.50 10* m*
_124[1.3810107% J

1 pressure unit =1 energy unit [{1 length unit)_3 = ( - )3 =42.8 MPa
34200 " m

The temperature always occurs multiplied by the boltzmann constant.

(kT) _ Ty [1.3810107 JK __Ts
b "/ reduced units 124 EL381|:|_0_23 J/(energy unit) 124 K

energy units

The heat capacity is always presented divided by k, and isindependent of units
I
kb reduced units kb Sl

Conversion between Morsereduced unitsand S| units

1 energy unit =17001.38110% J=2.35[10"* J
1 length unit = 3.710107°/2"°* m=3.31m

1 density unit = (1 length unit)® =(3.3100™ m) "~ =2.76 10* m*
_1701.3811107% J

1 pressure unit =1 energy unit [{1 length Unit)_3 ( 10)3
3.31110°

=64.7 MPa

The temperature always occurs multiplied by the boltzmann constant.

(kT) _ Ty 1.38100% JK __Ts
b" Jreducedunits 170 [1.38110°% J/(energy unit) 170 K

energy units

The heat capacity is always presented divided by k, and isindependent of units

kb reduced units kb Sl
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Montelab CELLPAIR Chapter 2

SIMPLE FLUIDS WITH CELL CONSTRAINTS
WITH LJ OR MORSE POTENTIAL IN
THE CANONICAL ENSEMBLE (NVT)

THEORY

2.1. Phase segregation

Within the two-phase region, the fluid should segregate into either droplets in a gas or
bubbles in a liquid. Such a fluid is difficult to smulate. Firstly, the number of active
particles must be very large in order to form the inhomogenieties. And secondly, if the
system is large enough, the timescale for the segregation is very long. Hence it is very
difficult to get reliable results within the two-phase region using the normal Montel.ab
routine.

One way to deal with this problem is to confine the particles into subcells of the active
cube. The active cube is symmetrically divided into uniform cubic subcells. The number
of particles is the same in each cell. The particles are not allowed to leave the cell but
PBC are ill used in order to avoid surface effects (See Fig. 2.1). With this
arrangement, the inhomogenieties in the system are maximized to the size of a cell.
Thus, segregation of the system into droplets/bubbles in gas/liquid is prohibited and the
system will converge to equilibrium much faster than a system without cells.
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Fig. 2.1. Thistwo-dimensional active cube is divided into four cells with four
particles in each cell. The particles are not allowed to leave its cell. Periodic
boundary constraints are used.

2.2. Equation of state

In the previous section we concluded that a fluid with cell constraints is easier to
simulate. However, when comparing the results with experiments, we have not
simulated the correct fluid. A diagram that isinteresting for many applicationsis the P-v
diagram that illustrates one of the equations of state. From simulations for different
temperatures and densities such a diagram may be drawn. What could be the use of the
equation of state for an artificial cell fluid? Our hopes have to be set on the generic
trandations of cell diagrams to proper diagrams that have been shown to exist in some
cases. If such trandations will be developed, the smulation of a cell fluid is an
advantageous way to obtain the proper P-v diagrams.

The isothermsin a P-v diagram for a cell fluid will be quantitatively incorrect due to the
prevention of phase segregation. Already in 1873, J.D. van der Waals suggested an
equation of state for real gases that shows the principal shape of the isotherms below the
critical temperature:

P= kBT —E
v-b V'

where v is the volume per particle and a and b are parameters. Such an isotherm is
drawn in Fig. 2.2. The isotherm has two wiggles due to the prohibited segregation. The
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unphysical shape may however be taken care of by the so-called Maxwell
reconstruction. A system that is allowed to segregate into two phases will leave the
homogeneous isotherm at a volume V. At this volume, the pressure will remain
constant until all the liquid has been transformed into gas at the volume v, . For larger
volumes, the isotherm is again correctly represented by the homogeneous one. Thus, the
wiggles in the isotherm should be replaced by a straight line. The pressure of the
horizontal line should be set so that the two shaded areas in Fig. 2.2 are equal. Note that
wiggles may occur in simulations without cell constraints since larger inhomogenities
are prohibited in al fluids with PBC.

o
T
<

Pressure

volume per particle

Fig. 2.2. Maxwell reconstruction of an isotherm of a non-segregating fluid.

Despite the use of Maxwell reconstruction, the equations of state for the cell fluid might
be shifted and somewhat reshaped compared to the correct one. As mentioned above,
future research will hopefully give us generic methods for a correct reshaping.

2.3. Calculations of physical quantities

All the physical quantities that were described in chapter one are calculated in the same
way for acell fluid.
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THE CELL CONSTRAINED MONTE CARLO ALGORITHM

2.4. MetropolisMonte Carlo with cell constraints

A trial move of an atom out of its original cell isrejected. The Monte Carlo agorithmis

THE MONTELAB CELL CONSTRAINED MONTE CARLO ALGORITHM

1. Start with a configuration R, and pick randomly one of the particles in

the active cube.
2. Generate a trial configuration by changing the coordinates of the chosen

particle: x =x, +U,[-A 4
Yo=Y +U2[_A-A]
7, =7, +Uy[-A 4

3. Cdculate y= :ZE:S:::;((EL)) — o (UR)VR))/T

4. 1f y>U,[0,1] and the atom is not moved out of its cell, then accept the

trial configuration asthenew one R, ,,, eselet R,,, = R,.
5. Increase k by one a go back to 1.
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FEATURES OF MONTELAB

2.5. Initial configuration and meltdown

The initia configuration of the fluid could either come from an input file or be
generated by MonteLab. The initial configuration generated by MonteLab is a simple
cubic lattice. The particles will be spread to form an infinite crystal with periodic
boundary constraints.

When cells are to be used, the number of particles must be an even cubic number. The
number of cells that the active cube may be divided into is given in the following table.

Number of Number of

particles cells

8 lor8

27 lor27

64 1,8o0r64

125 lor 125

216 1,8, 27 or 216

343 1or 343

512 1, 8,64 or 512

729 1,270r 729

1000 1, 8, 125 or 1000

1331 1or1331

1728 1,8,27,64,216 or 1728
2197 1or 2197

2744 1, 8,343 or 2744

3375 1, 27,125 or 3375

4096 1, 8, 64, 512 or 4096
4913 1 or 4913

5832 1, 8, 27, 216, 729 or 5832
6859 1 or 6859

8000 1, 8, 64, 125, 1000 or 8000

Note that |etting the whole active cube be one cdll is not the same thing as not using cell
constraints at al. In the case of one cell, the particles cannot escape the active cube.

If the initial configuration is read from a file, the coordinates must obey

0<xYy,z<L=3N/p,likein Sec. 1.9. In addition, the particles must be placed in the
different cells correctly. Say that there are N active particles and M?® cells. The first
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n=N/M? particles must be in the first cell, i.e. 0<Xx,y,z<L/M . Particles n+1 to
2n must satisfy 0<x,y<L/M,L/M <z<2L/M etc.

2.6. Steplength adjustment

Identical with the algorithm in Sec 1.10.

2.7. Random number generator

Identical with the generator in Sec 1.11.

2.8. Tail correction for the potential cut-off

Identical with the correction in Sec 1.12.

2.9. The Q, tet

|dentical with thetest in Sec 1.13.

2.10. The Bubble sear ch method

|dentical with the method in Sec 1.14.

2.11. Restarting a ssimulation

As presented in Sec 1.15.

USER INSTRUCTIONS TO MONTELAB - INPUT

By one Monte Carlo step we mean one trial move of a particle. When comparing
simulation lengths for systems with different number of particles, it is rather the number
of Monte Carlo steps per particle that should be used.

2.12. Online help
Do you want sone help and information (y / n) ?

A short description to MonteLab may be given. If zero is given to any input, a short help
is given and once again MontelLab asks for input.
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2.13. Number of particles

Ent er Number of Particles ( <8001 )
The cubic numbers up to 8000 are 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728,
2197, 2744, 3375, 4096, 4913, 5832, 6859 and 8000.

2.14. Particle density

Enter the Particle Density

The particle density, i.e. particles per volume, should be given in reduced units. The
critical density for the reduced Lennard-Jones is approximately 0.3.

2.15. Temperature

Enter kb*T. (kb=The Bol tzmann const ant)

k,T should be given in reduced energy units. The critical temperature for the reduced
Lennard-Jones is approximately 1.3.

2.16. Kind of potential

Choose potential function for the interaction between

the particles

The options are Lennard-Jones or Morse potentials.

Enter the Mrse paraneter al pha.

The alpha parameter should be given in Morse reduced inverse length units.

2.17. Cut-off distance

Enter Cut-off Distance for the potenti al

The cut-off distance must be smaller than L/2. The reason is to avoid interaction
between a particle and many images of another particle. The cut-off should be given in
reduced length units. It is recommended to use a cut-off of at least 4.

2.18. I nitial configuration

Enter nunber of cells
The possible number of cells for a given number of particlesare listed in Sec. 2.5.
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Enter "G for 'generated or 'F for 'file'
Decide whether the initial configuration should be generated as a simple cubic crystal
by MonteLab or fetched from an input file.

Fromwhich file should the configuration be fetched.

A configuration input file should end with N lines of particle coordinates. The first
column should be numbered 1 to N. The second to fourth columns should give the x, y
and z coordinates of the particles, respectively. If anything goes wrong with the reading
of the file, the simulation will be interrupted. Furthermore, all the particles must be in
their cells according to Sec. 2.5. The output configuration file of a ssimulation is written
so that it might be used in another simulation as an input file.

2.19. Number of sampling intervalsfor the radial distribution function

Into how many g(r) Sanpling Intervals do you want to divide
the r axis?

The g(r) function will be sampled in equally long intervalsin r=0 to r=L/2. The
maximal number of intervalsis 10000.

2.20. Open output files

Enter a Nanme of this Sinulation.
(Maximumthirty letters and digits.)
The name of the simulation will be given as suffix to all the output files.

Enter Date (or just press enter).
(Maximumten letters and digits.)
Optional input of date that will be registered in all the output files.

Do you want to perform bubble search (Y/N) ?

Enter your choice.

2.21. Use of meltdown

Do you want to use a 'Meltdown'? ( Y/N)

Data sanpled during the neltdown period wll not be

included in the final averages.
Enter your choice.
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2.22. Use of steplength adjustment

Choose between fixed or adjusting Steplength.

Enter "F for '"fixed , "A for 'adjusting'.

Enter your choice. This question will only be asked if meltdown was chosen in the
previous gquestion.

Enter the rejection ratio you want in percentage.

(Wthin [5% 95% .)

The steplength will be adjusted to give a rejection rate close to the one entered here. If
you do not know of anything better, enter 50. The percentage should be given as an
integer.

2.23. Steplength

Enter (fixed/initial) Steplength for the Simulation.
If the steplength is chosen to be adjusted, this steplength is the one that is used during
the first tenth of the meltdown simulation. The steplength must be less than 0.9L.

2.24. Seed random number

Enter a positive integer seed random nunber.
The seed random number to the random number generator should be any positive
integer.

2.25. Setup of the meltdown simulation

How many Monte Carlo Steps do you want to perform between
every Evaluation of the Pressure, etc.?
Enter any number.

Ent er Nunmber of Monte Carlo Steps during the neltdown.

The meltdown is divided into ten parts and there must be at least one printing of the
pressure in each part. Therefore the total number of Monte Carlo steps must be a
multiple of ten times the number of steps between every pressure evaluation.

How nmany Monte Carlo Steps do you want to perform between
every Storing of the g(r) function?

Output of the g(r) function can be done at maximally every pressure printing. This
number must therefore be a multiple of the number of steps between every pressure
evaluation. If you do not want any g(r) output, enter a number greater than the total
number of meltdown steps.
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How many Monte Carlo Steps do you want
every Witing of particle coordinates?

to perform between

Output of the particle coordinates can be done at maximally every pressure printing.
This number must therefore be a multiple of the number of steps between every pressure
evaluation. If you do not want any output of the coordinates, enter a number greater

than the total number of meltdown steps.

2.26. Setup of thereal simulation

The same questions about number of steps are asked for the real simulation.

How many Monte Carlo Steps do you want
every Evaluation of the Pressure, etc.?

Enter Nunber of Mnte Carlo Steps
simul ati on.

How many Monte Carlo Steps do you want
every Storing of the g(r) function?

How nmany Monte Carlo Steps do you want
every Witing of particle coordinates?

USER INSTRUCTIONSTO MONTELAB - OUTPUT

2.27. The Conf file

to perform between

during the real

to perform between

to perform between

The same asin Sec. 1.31 except that the number of cellsiswritten too.

2.28. Thegyr file

The sameasin Sec. 1.32.

2.29. The Data file

The same asin Sec. 1.33 except that the number of cellsiswritten too.



2.30. Standard output

Thesameasin Sec. 1.34.

2.31. The Bubblefile

The same asin Sec. 1.35 except that the number of cellsiswritten too.

OBSTACLES AND SUGGESTIONS
We have used 512 particles as standard and a cut-off of 4. For the meltdown we have
used 1 million Monte Carlo steps and for the rea simulation 10 million steps. By

checking if the local average of e.g. the potentia energy has converged during the
meltdown one can check if the meltdown has been long enough.

PUBLICATION

On therole of density fluctuationsin the equation of state of a simplefluid
J. Westergren, S. Nordholm and R. Pendfold, Mol. Sim., 27, 17 (2001)
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Montel.ab MBACLUSTER Chapter 3

CLUSTERS OF ATOMS INTERACTING
WITH THE MBA (MANY-BODY ALLOY) POTENTIAL.
THE CANONICAL ENSEMBLE (NVT)

THEORY

3.1. Finite system

A metal clustersis an aggregate of afew to about a few hundreds or thousands of metal
atoms. They are of scientific interest as they have different properties compared with
both single atoms and bulk. They do also have properties which may be of technological
interest but this kind of nanotechnology is till initsinfancy.

In metal clusters with very few atoms, the bonds in the atoms might be directed in
similarity with normal covalently bonded molecules. For larger clusters, the bond is of
metallic character with dislocated free electrons, and the bonds are less directed. The
bond strength is approximately as strong as in molecules. There is however a hig
difference between molecules and metal clusters. When two molecules encounter each
other they normally bounce off unchanged. The metal clusters, however, generally
reduce the energy per atom by combining and tend to form larger and larger aggregates.
In a collision between two clusters, the excess energy might be too large for the clusters
to combine, but the clusters that leave after a collisions are unlikely the same as the ones
prior to the collision. The identity of a cluster is much weaker than for a molecule.
Thus, experiments are often done on clusters in beams in vacuum or isolated clusters on
substrates or cluster surrounded by insulating ligands.

Since the clusters tend to combine we cannot talk about "aliquid of Pd,, cluster". Still,
the term "melting of Pd,, clusters’ has a meaning. At low temperatures, a Pd,, cluster
has a stiff icosahedral structure but at higher temperatures the atoms in the clusters can
change positions and the structure might be far from the icosahedral one. Such a cluster
we call a molten one. Thus "solid" and "molten” refers to the state of a single cluster.
The heat capacity of a cluster has a peak at a temperature between the "solid" and
"molten” phases and this we identify as the melting temperature. In contrast to a bulk
system, the transition occurs in a temperature interval instead of at a single melting
point.
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This MonteLab program aims for ssimulating an ideal gas of single-sized clusters at a
specific temperature. Unfortunately such a system does not exist due to the tendency of
the clusters to combine. A cluster is unlikely to leave a wall that it collides with.
Furthermore, collisions between clusters will rapidly destroy the size uniformity. It can
still be of interest to know the thermal properties of a specific size for instance in the
short run of a cluster beam. Hence we can think of an ensemble of single-sized cluster
that exist for a short while.

As collisions between clusters ruins the uniformity of size, we consider the clusters to
form a gas of very low pressure, in which the cluster can be considered to exist
independently of each other. Hence there is no need to simulate more than one cluster.
Now the second fundamental difficulty arises. The probability for a cluster alone in the
universe to fragment is unity for al temperatures above zero kelvin. This is
demonstrated by a dimer alone in universe in Fig. 3.1. Say that the two atoms interact
with a Lennard-Jones potential. The probability for having the bond distanceis

Prob(r) O e VT 47w 2dr

The probability has a local maximum near the zero-kelvin equilibrium but as the
universe is so large, the small (vanishing) probability for a dimer configuration drowns
in the whole universe of fragmented configurations.

Probability density

Fig. 3.1. The probability density for aLJ dimer at different temperatures. The
temperature is low (solid), medium (dashed) and high (dashed-dotted).

The reason that not a normal gas of molecules fragment for al temperatures is that there
isacertain pressure and thus a certain number of molecules per unit volume
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The solution to this problem is to restrain the fragmentation in some way. One way is to
confine the cluster in a sphere of a certain volume. Any trial move of an atom out of the
sphere is regarded as a fragmentation attempt and is rejected. The choice of sphere
radius must be done by the user and thus the outcome of the simulation is dependent on
this choice. However, for moderate temperatures, the probability distribution in Fig. 3.1
has a distinct minimum. Setting a sphere diameter equal to that minimum would
probably give properties that are close to the ones in a gas. Furthermore, if the
simulation outcome does not change much for different choices of radii, the outcome is
reliable. In MonteLab, however, another definition of a fragmented configuration has
been used.

3.2. Fragmentation definition

The requirement that the atoms should stay within a fixed sphere may prohibit normal
unfragmented non-spherical configurations and make the cluster more spherical than it
should be. In order to avoid this, another definition of fragmented/non-fragmented
configurations are used in Montelab.

We say that two atoms are bonded simply if the distance between them are less than a
bond limit, B. Then we say that a cluster has fragmented if it is not possible to go from
any atom to any other atom via bonds. With this definition the chain of atoms in Fig.
3.2aisacluster but the atomsin Fig. 3.2b isafragmented cluster.

_ S O
O/Q O\O— 0 Q’/Q
O o O

Fig. 3.2. Bonds between the atoms are shown by strokes. The atoms to the
left form a cluster but the atoms to the right do not.

\O/

The method to test whether a collection of atoms is a cluster or not is taken from Graph
Theory [7]. Let us define the adjacent matrix A by

1 ifi=j
A; =41 if atomsi andj are bonded
0 if atomsi and | are not bonded

Then calculate the connection matrix P = (I + A)"™ where | is the identity matrix and N
is the number of atoms in the cluster. The matrix multiplication should be according to
Boolean agebra, i.e. as usual algebra with the exception that 1+1=1. If B, =1, itis
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possible to reach atom j from atom i via bonds but if P, =0, it isnot possible. Thus the
criterion that the cluster has not fragmented is that all entries of P are ones.

The user-defined parameter is the bond length limit B. If the outcome varies
significantly with B, the simulations are useless. However, in simulations of Pd,;, the
results are amost identical for 4.0 A <B<5.8A . Furthermore, at temperatures well
above the melting temperature, we have seen that trial moves are very seldom rejected
because of fragmentation. Hence we believe that the simulated configurations do
represent alow-pressure gas of uniform palladium clusters.

3.3. The canonical ensemble and heat capacities

The probability for a configuration is zero if the cluster has fragmented or proportional
to the Boltzmann factor exp(-U (R)/k,T). For a specific cluster it is not the
temperature (kinetic energy) that is constant but rather the total energy. Thus the set of
generated configurations does not represent the realistic configurations for a specific
cluster but for an ensemble of clusters, exactly as we wish. In the canonical ensemble
the volume should be constant, besides the number of particles and the temperature. Is
the volume fixed with our definition of a non-fragmented cluster? Since the maximal
length of a non-fragmented cluster is a chain of atoms with the length (N -1)B, the
cluster will alwaysfit in a cube with the side length L =(N —1) B . Thus the volume can
be regarded as fixed and requirements for a canonical ensemble are fulfilled.

One of the main advantages with the canonical ensemble is that the heat capacity is
obtainable from a simulation at one temperature. The heat capacity is the fluctuation in
energy given by

G, =(E)~(E)* =T +{U?) -(u )",

The heat capacity that we would like to obtain is however rather the one at constant

pressure. At very low cluster pressure, the cluster gas can be regarded asideal and there
isasimple relation between the two types of heat capacity:

C. =C, +k,

Since C, isat least equal to (3N -3)k,, the relative difference between C, and C, is
very small already for rather small clusters.

3.4. Energy calculations

The interaction between the cluster atoms we approximate to be similar as in a bulk.
Thus the binding of the atoms is of metal character. For the description of the potential

energy we use the Many-Body Alloy potential [5] (which is identical to the Gupta
potential in the expression):
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U, = —{0\/iexp(—2q(r” I, —1)) +£Oiexp( —p(r”. I, —1)).

j#i j#i

Note that the quantity U, is not identical to the removal energy of atomi. The attractive
part of the potentia is based on the second moment approximation of tight-binding
calculations and is of many-body character. The attraction is due to hybridization of the
d states into bands. The repulsion is modeled as being of Born-Mayer type. Parameters
for different metals are found in Appendix 3.1

With this cluster, PBC are of course not used, and r;; is the true distance between atoms
i and j. Note the difference between this potential and the pair potentials in chapters 1
and 2. For the pair potentials the sum isimagined to be over all bonds and thus a factor
1/2 is put in front of the sum over al particle distances. Here the potential is not in
terms of bonds and the parameters are fitted to the expression without the factor 1/2.

3.5. Surface energy calculations

The surface energy we define as the sum of the potential energy for al initial surface
atoms.

Ugriaee (R) = D U,

surface
atoms

A study of the surface energy can give information about a melting of the surface atoms
at lower temperatures than the overall melting.

Note that MonteLab does not upgrade what atoms are at the surface as a simulation
proceeds. It is instead given by the initiation of the simulation what atoms are to be
considered as surface atoms. Thus, this quantity is not appropriate if any surface atom
changes position with a core atom during the ssmulation. It is not necessary that the
surface atoms should be initialy at the surface. Thus the surface energy can be used
more generally as the sum of potential energy of a desired subset of the atoms.

3.6. Geometric properties
The following properties giving information of the geometrical structure of the cluster is

calculated: the mean distance to the centre of mass, the radii of gyration, the delta
function and the s(r ) function.
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3.7. The mean distance to the centr e of mass

The mean distance to the centre of mass for aconfiguration is

M(R)= 3.

X; —ZN:xi/N‘,

where x; isthe position of atom i. The average is then taken over all the configurations

<M>:vivéM (Ry) asW - o

This function is a good measure of the size of the cluster. By observing (M) as a
function of the temperature, the melting can be identified as the increase of the slope of

(M).
3.8. Theradii of gyration

The radius of gyration along a certain axis for abody is defined as

where 1, is the corresponding moment of inertia and m is the total mass. For a solid

ellipsoidal with the semi-axes a, b and c, the radii of gyration along the principal axes
are

K, = (b2 +cz)/5
K, = (a2 +cz)/5
K, =/(a® +b) /5.

Thus, the radii of gyration can tell about the shape of the ellipsoidal. For example a
prolate (cigar-shaped) ellipsoidal (see Fig. 3.38) with a>b =c has K, =K, >K, . Note
that a prolate ellipsoidal has two semi-minor axes and one semi-magjor one but that two
radii of gyration are larger than the third one.

In MonteLab, the radii of gyration are calculated for the cluster in order to give

information about shape. The moment of inertia tensor for a particle system is defined
as
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[N N N

> m(y+7) 2mxy)  2m(xz)

i=1 i i

| = —Z (xy) Z (¥ +7) -gm(yiz)

2m(xz)  2m(vz) X (x* +y7)

i i=l a
m is the mass of atom i. The coordinates are relative the centre of mass. The moments
of inertia along the principal axes are the eigenvalues of |. As MonteLab presumes that
all atoms are identical, the masses cancel when the radii of gyration are calculated.
Thus, the radii of gyration of the cluster can give a rough indication of the shape. The
clusters will of course not be exactly ellipsoidally shaped. In Fig. 3.3b, a snapshot of a
molten Pd.; is shown. As discussed in Sec. 3.2., the shape is far from spherical above

the melting temperature.

Picture # 1 Pd55_1500K_an [010312] phi=0, theta=1.5708

Fig. 3.3a. An dllipsoidal with the semi-axesa, b and c.
Fig. 3.3b. A molten Pdss cluster.

MontelLab calculates the average radii of gyration as the largest, smallest and medium
one.

3.9. The dfunction

The J function keeps track of the relative variation in interatomic distances. The
function is defined as
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This function can give information about how the bond distances change. A much more
important role is however that dincreases significantly if two atoms change positions.
Thus, disagood indicator for cluster melting.

3.10. The bond length spectrum, s(r)

The bond length spectrum s(r) gives the spectrum of bond lengths, r, in the interval
0<r <r,. The function is similar to the radial distribution function g(r) and

Montel ab uses the same routine for the calculation. The s(r) function is normalized so
that the integral from zero to infinity should be equal to the number of bonds, i.e.

r _N(N-1)
{s(r)dr—T.

In Fig. 3.4, the spectrum for a solid Pd.; cluster and one at the melting temperature is
shown. Note that for s(r), abond can be longer than the bond length limit, B.

1400

1200 ]

1000 ]

800 ]

s(r)

600 s ]

400

200

4 6
bond length, r [A]

Fig. 3.4. The 5(r) spectrum for a solid Pdsg cluster (solid) and one that is just
about to melt (dashed).
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THE CANONICAL CLUSTER MONTE CARLO ALGORITHM

3.10. Metropolis Monte Carlo with fragmentation prevention

The MonteLab definition of a fragmented cluster is that one or more entries in the
connection matrix P=(I +A)"™ is zero. It is however not necessary to calculate this
matrix after each trial move of an atom since we have advance information (except for the
first configuration.) We now that the cluster was not fragmented before the move of the
trial atom. Say that we the trial atom is number k. The "neighbours" are the atoms that are
bonded to k. All the other atoms are in some way bonded to the neighbours.

THE MONTELAB CHECK FOR FRAGMENTED CLUSTER

1. Check the neighbours after the trial move.
If al old neighbours are still neighbours, the cluster has not fragmented.
If there are no trial neighbours, the cluster has fragmented.
Else goto 2.

2. Some of the old neighbours are lost after the trial move.
Check whether the lost neighbours are still bonded to the neighbours that
are not |ost.
If they are, the cluster has not fragmented.
Else goto 3.

3. Wegive up the shortcuts and calculate P, = (I +A,,)" .

The Monte Carlo algorithmis



THE MONTELAB CANONICAL CLUSTER MONTE CARLO ALGORITHM

1. Start with aconfiguration R, and pick randomly one of the atoms.
2. Generate a trial configuration by changing the coordinates of the chosen
particle: x =x, +U,[-A 4

Yi = +U2[_A' A]

7, =7, +U [0,
3. Calculate y= PrObab.”.lty(Rt) =g VRNV

Probability (R, )

4. 1f y<U,[0,1] reject the trial configuration and let R,,, =R,. Else, test

whether the tria configuration is a fragmented cluster. If so let
R... =R,. If it is not fragmented, then accept the trial configuration as

thenew R,,,, eselet R,,, =R,.
5. Increase k by one a go back to 1.
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FEATURES OF MONTELAB

3.11. Initial configuration and meltdown

The initial configuration of the cluster could either come from an input file or be
generated by MonteLab. The initial configuration generated by MontelLab is an fcc
lattice that isfilled up as much as possible with the atoms.

Disregarded the initial configuration is read from afile or generated by MonteL ab, the
coordinates must form a non-fragmented cluster. If they do not, the simulation is
interrupted.

3.12. Steplength adjustment

Identical with the algorithm in Sec 1.10.

3.13. Random number generator

Identical with the generator in Sec 1.11.

3.14. Tail correction for the potential cut-off

No correction is done for clusters. The potential cut-off should be large enough to get
results that are accurate enough.

3.15. Restarting a ssmulation

As presented in Sec 1.15. Note that the delta function of two simulations is not simply
the average of the two results from the two simulations.

USER INSTRUCTIONS TO MONTELAB - INPUT

By one Monte Carlo step we mean one trial move of an atom. When comparing
simulation lengths for systems with different number of atoms, it is rather the number of
Monte Carlo steps per atom that should be used.
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3.16. Online help

Do you want sone help and information ((y / n) ?
A short description to MonteLab may be given. If zero is given to any input, a short help
is given and once again MontelLab asks for input.

3.17. Number of atoms

Ent er Number of Atoms ( <1001 )

3.18. Surface energy

Do you want to sanple the surface energy? (y / n)
The surface energy is defined in Sec. 3.5.

Enter the nunber of atons that are surface atons.
It is not necessary that the "surface atoms" are at the surface. They should just be a
subset of all the atoms.

Enter the nunbers of the surface atons

The numbers of the atoms are the same numbers that are given before the coordinates
in the Conf file. The numbers should be entered one per line.

3.19. Bond limit

Enter the bond limt [in A].

Two atoms are considered to be bonded if the distance between them is less than the
bond limit. The bonds are used for determination of fragmentation.

3.20. s(r) max bond length

Enter the s(r) max bond length [in A].

The s(r) spectrumis sampled from O to the " s(r) max bond length".

3.21. Temperature

Enter T [in K]
The temperature should be given in kelvin.
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3.22. The MBA potential parameters

Enter the MBA paraneter xi [in eV].
Enter the MBA paraneter epsilon [in eV].
Enter the MBA paraneter r0 [in A].

Enter the MBA paraneter p [no unit].

Enter the MBA paraneter g [no unit].

3.23. Cut-off distance

Enter Cut-off Distance for the potential [in A].
Since there is no tail correction for the clusters, the cut-off distance should be rather
large.

3.24. Initial configuration

Enter "G for 'generated or 'F for 'file'
Decide whether the initial configuration should be generated as an fcc crystal by
MontelLab or fetched froman input file.

Enter the lattice constant [in A].

Fromwhich file should the configuration be fetched.

A configuration input file should end with N lines of particle coordinates. The first
column should be numbered 1 to N. The second to fourth columns should give the x, y
and z coordinates of the particles, respectively. If anything goes wrong with the reading
of the file, the ssmulation will be interrupted. Furthermore, the cluster must form a non-
fragmented cluster according to the definition in Sec. 3.2. The output configuration file
of a simulation iswritten so that it might be used in another simulation as an input file,

3.25. Number of sampling intervalsfor the s(r) spectrum
Into how many s(r) Sanpling Intervals do you want to divide
the r axis?

The s(r) function will be sampled in equally long intervals in r=0 to
r ="s(r) max bond length" . The maximal number of intervalsis 10000.
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3.26. Open output files

Enter a Nanme of this Sinulation.
(Maximumthirty letters and digits.)
The name of the simulation will be given as suffix to all the output files.

Enter Date (or just press enter).
(Maximumten letters and digits.)
Optional input of date that will be registered in all the output files.

3.27. Use of meltdown

Do you want to use a 'Meltdown'? ( Y/N)

Data sanmpled during the neltdown period wll not be
included in the final averages.

Enter your choice.

3.28. Use of steplength adjustment

Choose between fixed or adjusting Steplength.

Enter '"F for '"fixed , "A for 'adjusting'.

Enter your choice. This question will only be asked if meltdown was chosen in the
previous gquestion.

Enter the rejection ratio you want in percentage.

(Wthin [5% 95% .)

The steplength will be adjusted to give a rejection rate close to the one entered here. If
you do not know of anything better, enter 50. The percentage should be given as an
integer.

3.29. Steplength
Enter (fixed/initial) Steplength for the Simulation.

If the steplength is chosen to be adjusted, this steplength is the one that is used during
thefirst tenth of the meltdown simulation.
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3.30. Seed random number

Enter a positive integer seed random nunber.
The seed random number to the random number generator should be any positive
integer.

3.31. Setup of the meltdown simulation

How many Monte Carlo Steps do you want to perform between
every witing of the energy

Enter any number.

Enter Number of Monte Carlo Steps during the neltdown.

The meltdown is divided into ten parts and there must be at least one writing of the
energy in each part. Therefore the total number of Monte Carlo steps must be a multiple
of ten times the number of steps between every writing of the energy.

How many Monte Carlo Steps do you want to perform between
every Storing of the s(r) function?

Output of the s(r) function can be done at maximally every energy writing. This number
must therefore be a multiple of the number of steps between every writing of the energy.
If you do not want any s(r) output, enter a number greater than the total number of
meltdown steps.

How nmany Monte Carlo Steps do you want to perform between
every Witing of atom c coordinates?

Output of the atomic coordinates can be done at maximally every energy writing. This
number must therefore be a multiple of the number of steps between every writing of the
energy. If you do not want any output of the coordinates, enter a number greater than
the total number of meltdown steps.

3.32. Setup of thereal simulation

The same questions about number of steps are asked for the real simulation.

How nmany Monte Carlo Steps do you want to perform between
every witing of the energy

Enter Nunmber of Monte Carlo Steps during the real
si mul ati on.

How nmany Monte Carlo Steps do you want to perform between
every Storing of the s(r) function?
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How nmany Monte Carlo Steps do you want to perform between
every Witing of atom c coordinates?

USER INSTRUCTIONSTO MONTELAB - OUTPUT

3.33. The Conf file

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date and then number of atoms are stated. Then for the desired
Monte Carlo steps, the coordinates of the configurations are written. The first column
gives the number of the particle, the second to the fourth give the x, y and z coordinates.
If ameltdown simulation is used, the end of that one is indicated. The file is ended with
the final configuration of the simulation. The configuration file can be used as an
configuration input file to MonteL ab.

3.34. Thesr file

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date are stated. Then for the desired Monte Carlo steps, the s(r)
function is written. The s(r) function is sampled in equal intervals from r =0 to
r=r. = S(r) max bond length". In this file the first column is the middle point in each
interval I, the second interval isthe s, numbers, defined by

s | dr= [ s(r)dr.

interval | interval |

The third column is the number of the interval, I. If a meltdown simulation is used, the
end of that one is indicated. All printings of s(r) are averages from the start of the
simulation (excluding the meltdown). The s(r) function is always printed after the
simulation is compl eted.

In versions 4 and 5, the g(r) function was used instead. The relation between the
functionsis

s(r) = constant [g (r)r>.

3.35. The Datafile
In the header, the MonteLab version number and kind of MonteLab program,

simulation name and date and potential type are stated. By aloca average we mean the
average of a quantity since the last Monte Carlo step for which the quantity was written

61



to the file. With the total average we mean the average since the start of the simulation.
Note that the total averageis reset after the meltdown.

The quantities are for the whole system and not per particle.
Local averages are then given for

1. Thepotentia energy, the squared potential energy

2. Theheat capacity

3. Radii of gyration. The first number is the average of the greatest radii of gyration
in all configurations.

4.  Mean distance to the centre of mass.

5 4

6. If chosen, the surface energy and the squared surface energy.

The heat capacity divided by the Boltzmann constant is the total variance from the start
of the simulation.

The last used random number is also given to enable restart of simulation (Sec. 1.15.).
Whenever the steplength is changed that is indicated in the file. If a meltdown
simulation is used, the end of that one isindicated.

This file ends with a list of the input data and the final results. The steplengths and
corresponding ratios of rejection are listed. The steplength that was used in the real
simulation is displayed as the final steplength. The number of rejected trial movesin the
real simulation is given so that a check of the regection ratio can be calculated.
Especidly, the number of trial configurations that were rejected because they would
lead to a fragmented cluster is written. Total averages and squared total averages are
given so that error estimates can be done. The average interatomic distances <rij>
between atoms i and j aswell as (r7) are given. Some quantities are given for the

J
final configuration.
3.36. Standard output
In the standard output the total averages of the potential energy is given. The name of

the simulation and the line "THE SIMULATION WAS PROPERLY FINISHED." is
found at the end of the line when the simulation is over.

OBSTACLES AND SUGGESTIONS

One obstacle is that there is a barrier between the solid and the molten phases. Thus, if
the simulation is started with a solid structure and the temperature is high enough that
the cluster should be molten a considerable fraction of the time, it still might take avery
long time until the cluster switches to the molten phase.

62



Since there is no tail correction for the potential cut-off, the cut-off must be fairly long.
For palladium we have used 12 A. For the clusters we have used between 100 000 and 1
000 000 Monte Carlo steps per atom. The meltdown has been 10% of the red
simulation. By checking if the local average of e.g. the potential energy has converged
during the meltdown one can check if the meltdown has been long enough.
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APPENDIX 3.1

Table of MBA parametersof bulk metals

Element &, [eV] £, [eV] r, [A] p q Reference
Pd 1.2630 0.08376 2.758 14.8 3.40 [6]

Ni 1.18595 0.0465616 |2.49 15.0541 138171  [7]

Pd 1.70769 0.173750 2.75 10.8874 3.75433  [7]

Au 1.88966 0.222356 2.88 9.95271 401820 [7]

Ag 1.16109 0.106026 2.89 10.64078 |3.21858 [7]

Ni 1.070 0.0376 2.52 16.999 1.189 [8]

Pd 1.718 0.1746 2.75 10.867 3.742 [8]

Pt 2.695 0.2975 2.77 10.612 4.004 [8]
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Montel ab MBAMICRO Chapter 4

CLUSTERS OF ATOMS INTERACTING
WITH THE MBA (MANY-BODY ALLOY) POTENTIAL.
THE MICROCANONICAL ENSEMBLE (NVE)

THEORY

4.1. The choice of proper ensemble

A cluster in a low-pressure gas seldom encounters any other cluster. The long periods
between the encounters, the cluster is moving as an isolated particle in space. Such a
particle rather has a constant total energy than a constant temperature. Perhaps, a more
realistic smulation would be to simulate the cluster in the microcanonical ensemble. In
that ensemble the number of atoms, N, the volume, V, and the total energy, E, are
constant. A major advantage with the microcanonica ensemble isthat if the total energy
is not very high, the cluster cannot fragment. Hence, there is no need for a user-defined
parameter as the bond length limit to prevent fragmentation. The disadvantage is that
the sampled properties are for a certain total energy and not for atemperature that is the
normal controlling parameter in experiments. Furthermore, the heat capacity of the
cluster is naturally not available directly from a simulation. The results from a
microcanonical ensemble might however be translated to thermal results with a
Boltzmann weighting of results at different energies. From simulations of Pd,,, Pd
and Pd,,,, we can conclude that the two kinds of ensembles give amost identical
results.

4.2. The microcanonical ensemble

The number of atoms is clearly fixed and as mentioned in Sec. 3.3, the volume of the
ensemble is not the very cluster volume, but is rather a fixed volume that the cluster can
never escape. A Monte Carlo simulation in the microcanonical ensemble isin principle
analogous to a simulation in the canonical ensemble. The atoms are moved randomly
one by one in order to generate configurations according to the proper distribution. But
what is the distribution?
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In the canonical ensemble, the spatial coordinates R and the momenta P are independent
and we only need to simulate the spatial configurations. In the microcanoncia
ensemble, each configuration must satisfy the energy conservation

Ekin (P) +U (R) = E[otal .
Since the quantities that we are interested in, as for instance the radii of gyration, are
functions of the spatial coordinates we would like to simulate only the spatial

configurations. What is then the probability for a configuration R?

The probability derivation is based on one of the fundamental postulates of Statistical
thermodynamics:

"All statesin an isolated (microcanonical) system are equally probable.”
Thus, al total configurations [R,P] are equally likely as long as they satisfy the energy
conservation. Considering only spatial configurations, the probability for R, must be

proportional to the number of different momenta states that are available for the kinetic
energy

Eiin (Pk) =B U (Rk)'
That probability is given by the density of states of the kinetic energy that is
p(E,,) = constant [ES*™. (4.1)

We end up at the following probability for a configuration R, :

Probability (R,) 0 (Eee~ U (R,))™ dR.

4.3. Calculations of quantities

Most of the quantities that are calculated in this version of Montel ab are identical to the
ones in the canonical ensemble (chapter 3). A few ones are however different. The heat
capacity is of course omitted here, as the temperature is not defined. Since the total
energy is known, not only the average potential energy can be calculated but also the
average kinetic energy

<Ekin> = Eoa _<U>-

Using the density of states expression in Eq. 4.1, the average kinetic energy at a
constant energy might be calculated using the boltzmann weighting
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[ Eur (Eur) o0 By 6T) E,,
<Ekin> =2 =—KkT. (4.2
I,O(Ekin)exp(— Ekin/ka)dEkin

0

For systems with many atoms, the canonical and the microcanonical ensembles are
equivalent, i.e. both the total energy and the temperature are constant. Hence, in alarge
microcanoncal system, Eq. 4.2 can be used to calculate the temperature. In smaller
clusters, it is not appropriate to talk about temperatures. MonteL ab still uses Eqg. 4.2 to
give ahint about how "warm" the cluster is.

If an average <A> of a quantity is known for all total energies E_,, from the ground

energy E,, the theffhal average (A), at aspecific temperature T can be calculated by a
weighted intergration over all energies

<A>Ewta| @( Eota )EXp(_ Ea /ka) dE

Ne— 8

(A), =

(4.3)
,0( E(otal )exp(_ E(otal /ka) dEtotal

N e—y 8

As simulation data from the microcanonical simulations is available only up to a
maximal energy E., , the integralsin Eqg. 4.3 must be truncated. If the temperature is
not too high, the truncation error may however be negligible as the contribution is
insignificant for large energies.
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THE MICROCANONICAL CLUSTER MONTE CARLO ALGORITHM

4.4. MetropolisMonte Carlo for constant total energy

THE MONTELAB MICROCANONICAL CLUSTER MONTE CARLO ALGORITHM

1. Start with aconfiguration R, and pick randomly one of the atoms.
2. Generate a trial configuration by changing the coordinates of the chosen
particle: x =x, +U,[-A A
Yi = Yk +U2[_A'4
z =z, +Us[-0 4
3. If U(R,)>E,, reectthetria configuration and let R, =R,.
Probability (R, ) ~U RV
Else, calculate y = — YR _| Baa .
Probability (R,) | Ega U (Ry)
4. If y<U,[0,1] reject the trid configuration and let R,,, =R,. Else,

accept thetrial configuration asthenew R, .
5. Increase k by one a go back to 1.
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FEATURES OF MONTELAB

4.5. Initial configuration and meltdown

The initial configuration of the cluster could either come from an input file or be
generated by MonteLab. The initial configuration generated by MonteLab is an fcc
lattice that isfilled up as much as possible with the atoms.

Disregarded the initial configuration is read from afile or generated by MonteL ab, the
potential energy of the configuration must not exceed the total energy. If it does, the
simulation is interrupted.

4.6. Steplength adjustment

Identical with the algorithm in Sec 1.10.

4.7. Random number generator

Identical with the generator in Sec 1.11.

4.8. Tail correction for the potential cut-off

No correction is done for clusters. The potential cut-off should be large enough to get

results that are accurate enough.

4.9. Restarting a simulation

As presented in Sec 3.15.

USER INSTRUCTIONS TO MONTELAB - INPUT

By one Monte Carlo step we mean one trial move of an atom. When comparing
simulation lengths for systems with different number of atoms, it is rather the number of
Monte Carlo steps per atom that should be used.
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4.10. Online help

Do you want sone help and information ((y / n) ?

A short description to MonteLab may be given. If zero is given to any input, a short help
is given and once again MontelLab asks for input.

4.11. Number of atoms

Enter Nunmber of Atons ( <1001 )

4.12. Surface energy

Do you want to sanple the surface energy? ( y / n)
The surface energy is defined in Sec. 3.5.

Enter the nunber of atons that are surface atons.
It is not necessary that the "surface atoms" are at the surface. They should just be a
subset of all the atoms.

Enter the nunbers of the surface atons

The numbers of the atoms are the same numbers that are given before the coordinates
in the Conf file. One numbers should be entered one on each line.

4.13. 5(r) max bond length

Enter the s(r) max bond length [in A].

The s(r) spectrumis sampled from O to the " s(r) max bond length".

4.14. Thetotal energy

Enter the total energy [in eV]
Exactly zero cannot be entered.

4.15. The MBA potential parameters
Enter the MBA paraneter xi [in eV].
Enter the MBA paraneter epsilon [in eV].

Enter the MBA paraneter r0 [in A].
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Enter the MBA paraneter p [no unit].

Enter the MBA paraneter g [no unit].

4.16. Cut-off distance

Enter Cut-off Distance for the potential [in A].
Since there is no tail correction for the clusters, the cut-off distance should be rather
large.

4.17. Initial configuration

Enter "G for 'generated or 'F for 'file'
Decide whether the initial configuration should be generated as an fcc crystal by
MontelLab or fetched froman input file.

Fromwhich file should the configuration be fetched.

A configuration input file should end with N lines of particle coordinates. The first
column should be numbered 1 to N. The second to fourth columns should give the x, y
and z coordinates of the particles, respectively. If anything goes wrong with the reading
of the file, the simulation will be interrupted. The potential energy of the initial
configuration must be less than the total energy, otherwise the simulation isinterrupted.

4.18. Number of sampling intervalsfor the s(r) spectrum

Into how many s(r) Sanpling Intervals do you want to divide
the r axis?

The g(r) function will be sampled in equally long intervals in r=0 to
r ="s(r) max bond length" . The maximal number of intervalsis 10000.

4.19. Open output files

Enter a Nanme of this Sinulation.

(Maximumthirty letters and digits.)

The name of the simulation will be given as suffix to all the output files.
Enter Date (or just press enter).

(Maximumten letters and digits.)
Optional input of date that will be registered in all the output files.
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4.20. Use of meltdown

Do you want to use a 'Meltdown'? ( Y/N)

Data sanmpled during the neltdown period wll not be
included in the final averages.

Enter your choice.

4.21. Use of steplength adjustment

Choose between fixed or adjusting Steplength.

Enter '"F for '"fixed , "A for 'adjusting'.

Enter your choice. This question will only be asked if meltdown was chosen in the
previous question.

Enter the rejection ratio you want in percentage.

(Wthin [5% 95% .)

The steplength will be adjusted to give a rgjection rate close to the one entered here. If
you do not know of anything better, enter 50. The percentage should be given as an
integer.

4.22. Steplength

Enter (fixed/initial) Steplength for the Simulation.

If the steplength is chosen to be adjusted, this steplength is the one that is used during
the first tenth of the meltdown simulation.

4.23. Seed random number

Enter a positive integer seed random nunber.

The seed random number to the random number generator should be any positive
integer.

4.24. Setup of the meltdown simulation

How many Monte Carlo Steps do you want to perform between
every witing of the energy

Enter any number.

Enter Number of Monte Carlo Steps during the neltdown.
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The meltdown is divided into ten parts and there must be at least one writing of the
energy in each part. Therefore the total number of Monte Carlo steps must be a multiple
of ten times the number of steps between every writing of the energy.

How nmany Monte Carlo Steps do you want to perform between
every Storing of the s(r) function?

Output of the s(r) function can be done at maximally every energy writing. This number
must therefore be a multiple of the number of steps between every writing of the energy.
If you do not want any s(r) output, enter a number greater than the total number of
meltdown steps.

How many Monte Carlo Steps do you want to perform between
every Witing of atom c coordi nates?

Output of the atomic coordinates can be done at maximally every energy writing. This
number must therefore be a multiple of the number of steps between every writing of the
energy. If you do not want any output of the coordinates, enter a number greater than
the total number of meltdown steps.

4.25. Setup of thereal simulation

The same questions about number of steps are asked for the real simulation.

How many Monte Carlo Steps do you want to perform between
every witing of the energy

Enter Nunber of Mnte Carlo Steps during the real
si mul ati on.

How many Monte Carlo Steps do you want to perform between
every Storing of the s(r) function?

How nany Monte Carlo Steps do you want to perform between
every Witing of atom c coordinates?

USER INSTRUCTIONSTO MONTELAB - OUTPUT

4.26. The Conf file

Thesameasin Sec. 3.33.
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4.27. Thesr file

Thesameasin Sec. 3.34.

4.28. The Datafile

In the header, the MonteLab version number and kind of MonteLab program,
simulation name and date and potential type are stated. By alocal average we mean the
average of a quantity since the last Monte Carlo step for which the quantity was written
to the file. With the total average we mean the average since the start of the simulation.
Note that the total averageisreset after the meltdown.

The quantities are for the whole system and not per particle.
Local averages are then given for

1. Thepotentia energy, the squared potential energy

2. Radii of gyration. The first number is the average of the greatest radii of gyration
in al configurations.

3. Mean distance to the centre of mass.

4. Q4
5. The average interatomic distances <rij> between atoms i and j. Also <r”2> are
given.

6. If chosen, the surface energy and the squared surface energy.

The heat capacity divided by the Boltzmann constant is a total variance from the start of
the simulation. The "Average calculated temperature” is the temperature defined in Eq.
4.2. Recall that it is not appropriate to talk about temperatures for small clusters.

The last used random number is also given to enable restart of simulation (Sec. 1.15.).
Whenever the steplength is changed that is indicated in the file. If a meltdown
simulation is used, the end of that one isindicated.

This file ends with a list of the input data and the final results. The steplengths and
corresponding ratios of reection are listed. The steplength that was used in the real
simulation is displayed as the final steplength. The number of rejected trial movesin the
real simulation is given so that a check of the regection ratio can be calculated.
Especidly, the number of trial configurations that were rejected because they would
lead to a fragmented cluster is written. Total averages and squared total averages are
given so that error estimates can be done. Some quantities are given for the final
configuration.

4.29. Standard output

The same asin Sec. 3.36. (The heat capacity is however not calculated.)
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OBSTACLES AND SUGGESTIONS

One obstacle is that there is a barrier between the solid and the molten phases. Thus, if
the simulation is started with a solid structure and the total energy is high enough that
the cluster should be molten a considerable fraction of the time, it still might take avery
long time until the cluster switches to the molten phase.

Since there is no tail correction for the potential cut-off, the cut-off must be fairly long.
For palladium we have used 12 A. For the clusters we have used between 100 000 and 1
000 000 Monte Carlo steps per atom. The meltdown has been 10% of the rea
simulation. By checking if the local average of e.g. the potential energy has converged
during the meltdown one can check if the meltdown has been long enough.
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Montel ab MBAANNEAL Chapter 5

CLUSTERS OF ATOMS INTERACTING
WITH THE MBA (MANY-BODY ALLOY) POTENTIAL.
THE CANONICAL ENSEMBLE (NVT), ANNEALING

THEORY

5.1. Annealing speed

MonteLab MBAANNEAL is amost identical to MonteLab MBACLUSTER. The
ensemble is the canonical ensemble with fixed number of atoms, volume and
temperature. During the optional meltdown period the temperature is fixed but during
the real simulation, the temperature is quenched or annealed. With the start temperature
T,, the end temperature T, and the number of Monte Carlo steps during the real
simulation W, the temperature is changed by AT =(T, -T,)/W after each trial move.

With avery slow annealing from a molten cluster, the cluster might crystallize and find
the configuration with a minimum energy. This is the case for instance for Pdss,
although the freezing/melting show a small hysterisis. On the other hand, Pd;4; does not
find its minimum energy configuration even at reasonably slow annealing.

FEATURES OF MONTELAB

5.2. Initial configuration and meltdown

As the temperature gradually decreases, it would desirable to simultaneously decrease
the steplength. That is also implemented is MonteLab. If the steplength is chosen to be
adjusted during meltdown, the steplength will continue to be adjusted throughout the
real ssmulation. The real simulation is divided into ten parts and after each part a new
steplength will be calculated according to
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s.=%s i=2.10
G

The desired rgjection ratio is qq. S and g are the steplength and the regjection ratio,
respectively, of the simulation part i. Since the estimation of the steplength will be
based on the rgjection rate at a higher temperature, the rgection rate will generaly be
somewhat higher than the desired one.

USER INSTRUCTIONS TO MONTELAB - INPUT

The input is the same as for MonteLab MBACLUSTER with the exception of a
guestion of final the temperature.

5.3 Final temperature

Enter final T [in K]
The temperature must be lower than the initial one.

USER INSTRUCTIONS TO MONTELAB - OUTPUT

The output is the same as for MonteLab MBACLUSTER with the exception of that the
steplengths during the real simulation is registered in the Data file. Also, the
temperature is followed during the ssmulation.
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