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When Quantum Effects Are Important –
Feynman’s Path Integral Method
By Jens Poulsen

Feynman’s Path Integral Method is a method to obtain quantum results from 
molecular simulations with classical equations. Real atoms and molecules are 
quantum objects with an uncertainty in their position. In ordinary classical 
simulations this effect is neglected, but in Feynman’s method it is included.

As an example we have calculated the heat capacity of liquid helium at 4.2 K. At 
this temperature the quantum effects are large. In Fig. 1, the liquid heat capacity at 
saturated vapour pressure is shown. The red star displays that the heat capacity 
from Feynman’s Path Integral Method gives the same value as the experimental one. 
The erroneous result from a classical simulation (black star) is much higher.

In Feynman’s method, the classical exact positon of an atom is replaced by a 
“polymer” of ”beads” connected by springs.  The more extended the polymer, the 
more ”smeared out” is the location of the atom.
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In Fig. 3, two atoms are shown, each represented by a polymer of six beads. The 
lines denote real potential interactions between pairs of beads. Neighbour beads are 
bound together by harmonic springs whose force constants increase for increasing 
temperature, thereby contracting them to the same point in the high temperature 
limit, i.e. the classical case.

Say that we want to simulate a system comprised of     atoms. In classical physics the 
interaction between the atoms is described by a potential

where   is the position of atom  . Using this potential in a Monte Carlo or Molecular 
Dynamics simulation, for instance the energy at a specific temperature may be 
obtained.

With Feynman’s method each atom is replaced by a ring of   beads. The same 
function      is used. The total potential energy is however now the average potential 
energy when all the beads are included. The first term is obtained by replacing the 
position of each atom by the position of bead number one of each atom, etc. Thus,

where      is the position of bead   of atom  .

Finally, the quantum mechanical spring energy is added to the total potential energy. 

This energy term keeps the atomic polymer intact.

At lower temperature, a greater    is required. Typically a value of             is suffi- 
cient for aqueous systems at room temperature. It follows that an accurate quantum 
simulation of many-body systems can be performed in a classical manner, but with a 
larger classical system composed of ”bead” polymers.
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